Generalised Entropies for Decision Trees in Classification Under Monotonicity Constraints

IF 3 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Expert Systems Pub Date : 2025-03-12 DOI:10.1111/exsy.70035
Oumaima Khalaf, Salvador Garcia, Anis Ben Ishak
{"title":"Generalised Entropies for Decision Trees in Classification Under Monotonicity Constraints","authors":"Oumaima Khalaf,&nbsp;Salvador Garcia,&nbsp;Anis Ben Ishak","doi":"10.1111/exsy.70035","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Several decision-making approaches involve ordinal labelling between feature values and decision outcomes. These issues refer to ordinal classification under monotonicity constraints. Recently, some machine learning approaches have been designed to deal with these kinds of problems. Indeed, numerous experiments have shown that these algorithms are widely used in real-life applications because of their flexibility and efficiency in terms of interpretation and predictions. In this paper, we introduce novel approaches for measuring feature quality and information quantity, called Rényi-Tsallis Monotonic Tree (RTMT), which uses the advantages of Rényi and Tsallis entropies while incorporating monotonicity constraints through an optimisation framework. Moreover, we introduce Mono-CART, a variant of the CART approach adapted for monotonic classification. New decision tree algorithms are designed on the basis of aforementioned entropies while considering the monotonicity constraints within an optimisation system. The experiments conducted using some benchmark datasets demonstrate the superiority of the proposed approaches compared to existing methods.</p>\n </div>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.70035","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Several decision-making approaches involve ordinal labelling between feature values and decision outcomes. These issues refer to ordinal classification under monotonicity constraints. Recently, some machine learning approaches have been designed to deal with these kinds of problems. Indeed, numerous experiments have shown that these algorithms are widely used in real-life applications because of their flexibility and efficiency in terms of interpretation and predictions. In this paper, we introduce novel approaches for measuring feature quality and information quantity, called Rényi-Tsallis Monotonic Tree (RTMT), which uses the advantages of Rényi and Tsallis entropies while incorporating monotonicity constraints through an optimisation framework. Moreover, we introduce Mono-CART, a variant of the CART approach adapted for monotonic classification. New decision tree algorithms are designed on the basis of aforementioned entropies while considering the monotonicity constraints within an optimisation system. The experiments conducted using some benchmark datasets demonstrate the superiority of the proposed approaches compared to existing methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Expert Systems
Expert Systems 工程技术-计算机:理论方法
CiteScore
7.40
自引率
6.10%
发文量
266
审稿时长
24 months
期刊介绍: Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper. As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.
期刊最新文献
Generalised Entropies for Decision Trees in Classification Under Monotonicity Constraints Lionfish Search Algorithm: A Novel Nature-Inspired Metaheuristic A Strategic Data-Driven Roadmap for Enhancing Energy Security in Taiwan Under Industry 5.0 Artificial Orca Optimiser: Theory and Applications for Global Optimisation Problems Classification of Damage on Wind Turbine Blades Using Automatic Machine Learning and Pressure Coefficient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1