Conventional pulse starch extraction methods face challenges in terms of yield, purity, and recovery. The native starches after extraction often undergo modification for broader applications. Ultrasound is considered a promising approach for starch extraction and modification due to its unique principle and reduced processing times. This work addresses the effects of ultrasound-assisted methods on extraction and characteristic modification of pulse starches.
The cavitation effect of ultrasound effectively disrupts starch–protein interactions, improves diffusion, and significantly increases the pure starch yield. When applied to starch modification, it impacts surface morphology, amylose, and amylopectin chains resulting in notable changes to the characteristic behavior. Dual modification by combining ultrasound with other methods could allow for customized starch characteristics through structural reorganization, cross-linking, and depolymerization.
The increased yields and modified properties of pulse starches through ultrasound-assisted methods could enable their utilization in a wide range of food and nonfood applications.
This review provides new insights into the extraction and modification of pulse starches through ultrasound-assisted methods. It benefits researchers, food and starch industries, in selecting appropriate processing methods based on yield and specific properties of pulse starches required for their intended applications.