Peixi Wang, Yuhui Han, Xiaoming Hu, Zhenning Li, Xichen Li, Yingfei Fang, Jun Ying, Song Yang
{"title":"Impacts of Strengthened Antarctic Circumpolar Current on the Seasonality of Arctic Climate","authors":"Peixi Wang, Yuhui Han, Xiaoming Hu, Zhenning Li, Xichen Li, Yingfei Fang, Jun Ying, Song Yang","doi":"10.1029/2025GL115211","DOIUrl":null,"url":null,"abstract":"<p>To understand the role of the Antarctic Circumpolar Current (ACC) in the polar seasonality and its remote effect on the Arctic climate, we use the Community Earth System Model to perform Drake Passage (DP) open and closed experiments. Model results illustrate that in the opened DP, the ACC and Atlantic Meridional Overturning Circulation (AMOC) strengthen, leading to a colder Antarctic and a warmer Arctic. Notably, the temperature changes in both the Antarctic and the Arctic show significant seasonal differences, with the largest polar response during the cold seasons. Around the Antarctic, both the ACC and overturning circulation exhibit stronger acceleration in winter than in summer, causing more pronounced cooling in winter. Furthermore, negative seasonal energy transfer mechanism amplifies this cooling. In contrast, around the Arctic, the AMOC and ocean heat transport show relatively insignificant seasonal variation. Instead, it is the downward latent and sensible fluxes that induce amplified winter warming.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 6","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL115211","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025GL115211","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To understand the role of the Antarctic Circumpolar Current (ACC) in the polar seasonality and its remote effect on the Arctic climate, we use the Community Earth System Model to perform Drake Passage (DP) open and closed experiments. Model results illustrate that in the opened DP, the ACC and Atlantic Meridional Overturning Circulation (AMOC) strengthen, leading to a colder Antarctic and a warmer Arctic. Notably, the temperature changes in both the Antarctic and the Arctic show significant seasonal differences, with the largest polar response during the cold seasons. Around the Antarctic, both the ACC and overturning circulation exhibit stronger acceleration in winter than in summer, causing more pronounced cooling in winter. Furthermore, negative seasonal energy transfer mechanism amplifies this cooling. In contrast, around the Arctic, the AMOC and ocean heat transport show relatively insignificant seasonal variation. Instead, it is the downward latent and sensible fluxes that induce amplified winter warming.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.