{"title":"An efficient deep learning-based strategy to screen inhibitors for GluN1/GluN3A receptor.","authors":"Ze-Chen Wang, Yue Zeng, Jin-Yuan Sun, Xue-Qin Chen, Hao-Chen Wu, Yang-Yang Li, Yu-Guang Mu, Liang-Zhen Zheng, Zhao-Bing Gao, Wei-Feng Li","doi":"10.1038/s41401-025-01513-x","DOIUrl":null,"url":null,"abstract":"<p><p>The GluN1/GluN3A receptor, a unique excitatory glycine receptor recently identified in the central nervous system, challenges traditional perspectives of N-methyl-D-aspartate (NMDA) receptor diversity and glycinergic signaling. Its role in emotional regulation positions it as a potential therapeutic target for neuropsychiatric disorders. However, pharmacological research on GluN1/GluN3A receptors remains at an early stage. Traditional high-throughput screening methods for ion channel drug discovery often lack efficiency, particularly when applied to large compound libraries. To address this concern, we designed a deep learning-based strategy that balances efficiency and accuracy for identifying GluN1/GluN3A inhibitors. First, a sequence-based scoring function was developed to rapidly screen a library containing 18 million compounds, reducing the pool to approximately 10<sup>5</sup> candidates. Next, two complex-based scoring functions, IGModel and RTMScore, were employed to precisely score and rank the remaining candidates. Finally, an active molecule with an IC<sub>50</sub> of 2.87 ± 0.80 μM for the GluN1/GluN3A receptor was confirmed through whole-cell voltage-clamp electrophysiology. This study also presents a paradigm for integrating deep learning into rapid and precise high-throughput screening.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01513-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The GluN1/GluN3A receptor, a unique excitatory glycine receptor recently identified in the central nervous system, challenges traditional perspectives of N-methyl-D-aspartate (NMDA) receptor diversity and glycinergic signaling. Its role in emotional regulation positions it as a potential therapeutic target for neuropsychiatric disorders. However, pharmacological research on GluN1/GluN3A receptors remains at an early stage. Traditional high-throughput screening methods for ion channel drug discovery often lack efficiency, particularly when applied to large compound libraries. To address this concern, we designed a deep learning-based strategy that balances efficiency and accuracy for identifying GluN1/GluN3A inhibitors. First, a sequence-based scoring function was developed to rapidly screen a library containing 18 million compounds, reducing the pool to approximately 105 candidates. Next, two complex-based scoring functions, IGModel and RTMScore, were employed to precisely score and rank the remaining candidates. Finally, an active molecule with an IC50 of 2.87 ± 0.80 μM for the GluN1/GluN3A receptor was confirmed through whole-cell voltage-clamp electrophysiology. This study also presents a paradigm for integrating deep learning into rapid and precise high-throughput screening.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.