Multiple Intra-Articular Injections of Adipose-Derived Mesenchymal Stem Cells for Canine Osteoarthritis Treatment.

IF 5.1 2区 生物学 Q2 CELL BIOLOGY Cells Pub Date : 2025-02-20 DOI:10.3390/cells14050323
Xianqiang Li, Xuwei Jian, Ziyin Yan, Huazhen Liu, Lisheng Zhang
{"title":"Multiple Intra-Articular Injections of Adipose-Derived Mesenchymal Stem Cells for Canine Osteoarthritis Treatment.","authors":"Xianqiang Li, Xuwei Jian, Ziyin Yan, Huazhen Liu, Lisheng Zhang","doi":"10.3390/cells14050323","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is one of the most common degenerative diseases in dogs and humans, which can lead to articular cartilage deterioration, chronic pain, and decreased quality of life. The anti-inflammatory, anti-fibrotic, analgesic, and cartilage regeneration properties of mesenchymal stem cell (MSC) therapy provide a new direction for the treatment development of OA in the future. Currently, MSC therapy lacks confirmed ideal sources, dosages, formulations, and specific characteristics. In this study, we evaluated the efficacy of multiple canine adipose-derived mesenchymal stem cell (ADSC) injections on anti-inflammation and joint cartilage damage in a canine OA model. Considering animal ethics, we simulated the effects of inflammation and cartilage repair during treatment through a mouse OA model. In the mouse OA model, through the detection of cartilage repair and inflammation-related key factors via histology and molecular biology, it was found that MSC therapy has a certain repair effect on cartilage, but the anti-inflammatory effect is time-dependent. In the canine OA model, we verified the feasibility of multiple injections of ADSCs. Compared with the control group, the cartilage repair effect of the treatment group was obvious, and the inflammatory factors decreased, showing an obvious therapeutic effect. This study demonstrates that multiple intra-articular injections of canine ADSCs could be effective in treating OA symptoms.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 5","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899304/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14050323","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) is one of the most common degenerative diseases in dogs and humans, which can lead to articular cartilage deterioration, chronic pain, and decreased quality of life. The anti-inflammatory, anti-fibrotic, analgesic, and cartilage regeneration properties of mesenchymal stem cell (MSC) therapy provide a new direction for the treatment development of OA in the future. Currently, MSC therapy lacks confirmed ideal sources, dosages, formulations, and specific characteristics. In this study, we evaluated the efficacy of multiple canine adipose-derived mesenchymal stem cell (ADSC) injections on anti-inflammation and joint cartilage damage in a canine OA model. Considering animal ethics, we simulated the effects of inflammation and cartilage repair during treatment through a mouse OA model. In the mouse OA model, through the detection of cartilage repair and inflammation-related key factors via histology and molecular biology, it was found that MSC therapy has a certain repair effect on cartilage, but the anti-inflammatory effect is time-dependent. In the canine OA model, we verified the feasibility of multiple injections of ADSCs. Compared with the control group, the cartilage repair effect of the treatment group was obvious, and the inflammatory factors decreased, showing an obvious therapeutic effect. This study demonstrates that multiple intra-articular injections of canine ADSCs could be effective in treating OA symptoms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cells
Cells Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍: Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
期刊最新文献
Selective Azapeptide CD36 Ligand MPE-298 Regulates oxLDL-LOX-1-Mediated Inflammation and Mitochondrial Oxidative Stress in Macrophages. The Beneficial Role of the Thyroid Hormone Receptor Beta 2 (thrb2) in Facilitating the First Feeding and Subsequent Growth in Medaka as Fish Larval Model. HOTAIR Participation in Glycolysis and Glutaminolysis Through Lactate and Glutamate Production in Colorectal Cancer. The LSmAD Domain of Ataxin-2 Modulates the Structure and RNA Binding of Its Preceding LSm Domain. Tryptophan and Its Metabolite Serotonin Impact Metabolic and Mental Disorders via the Brain-Gut-Microbiome Axis: A Focus on Sex Differences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1