Ki Yeon Kim, Ji Min Lee, Eun Ji Lee, Daun Jung, Ah-Ra Goh, Min Chul Choi, Sang Geun Jung, Hyun Park, Sohyun Hwang, Haeyoun Kang, Hee Jung An
{"title":"Establishment and Its Utility of a Patient-Derived Cell Xenografts (PDCX) Model with Cryopreserved Cancer Cells from Human Tumor.","authors":"Ki Yeon Kim, Ji Min Lee, Eun Ji Lee, Daun Jung, Ah-Ra Goh, Min Chul Choi, Sang Geun Jung, Hyun Park, Sohyun Hwang, Haeyoun Kang, Hee Jung An","doi":"10.3390/cells14050325","DOIUrl":null,"url":null,"abstract":"<p><p>Patient-derived xenograft (PDX) models are powerful tools in cancer research, offering an accurate platform for evaluating cancer treatment efficacy and predicting responsiveness. However, these models necessitate surgical techniques for tumor tissue transplantation and face challenges with non-uniform tumor growth among animals. To address these issues, we attempted to develop a new PDX modeling method using high-grade serous ovarian cancer (HGSC), a fatal disease with a 5-year survival rate of 29%, which requires personalized research due to its morphological, genetic, and molecular heterogeneities. In this study, we developed a new patient-derived cancer cell xenograft (PDCX) model with high engraftment efficiency (64%) that utilizes primary cancer cells instead of patient tissues. Primary cancer cells can be stably cryopreserved for extended periods (up to 485 days), and when transplanted into female NSGA mice, they maintain morphological and molecular characteristics without significant genetic differences compared to their original primary tumors. Furthermore, PDCX models can be easily produced using a syringe, allowing for uniform tumor sizes across multiple animals. Additionally, M2 PDCXs exhibited a significantly faster growth rate compared to M2 PDTXs. Consequently, our PDCX model offers a streamlined approach for evaluating personalized cancer treatments with minimal experimental variability.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 5","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898490/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14050325","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Patient-derived xenograft (PDX) models are powerful tools in cancer research, offering an accurate platform for evaluating cancer treatment efficacy and predicting responsiveness. However, these models necessitate surgical techniques for tumor tissue transplantation and face challenges with non-uniform tumor growth among animals. To address these issues, we attempted to develop a new PDX modeling method using high-grade serous ovarian cancer (HGSC), a fatal disease with a 5-year survival rate of 29%, which requires personalized research due to its morphological, genetic, and molecular heterogeneities. In this study, we developed a new patient-derived cancer cell xenograft (PDCX) model with high engraftment efficiency (64%) that utilizes primary cancer cells instead of patient tissues. Primary cancer cells can be stably cryopreserved for extended periods (up to 485 days), and when transplanted into female NSGA mice, they maintain morphological and molecular characteristics without significant genetic differences compared to their original primary tumors. Furthermore, PDCX models can be easily produced using a syringe, allowing for uniform tumor sizes across multiple animals. Additionally, M2 PDCXs exhibited a significantly faster growth rate compared to M2 PDTXs. Consequently, our PDCX model offers a streamlined approach for evaluating personalized cancer treatments with minimal experimental variability.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.