{"title":"Advancements in the application of artificial intelligence in the field of colorectal cancer.","authors":"Mengying Zhu, Zhenzhu Zhai, Yue Wang, Fang Chen, Ruibin Liu, Xiaoquan Yang, Guohua Zhao","doi":"10.3389/fonc.2025.1499223","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is a prevalent malignant tumor in the digestive system. As reported in the 2020 global cancer statistics, CRC accounted for more than 1.9 million new cases and 935,000 deaths, making it the third most common cancer worldwide in terms of incidence and the second leading cause of cancer-related deaths globally. This poses a significant threat to global public health. Early screening methods, such as fecal occult blood tests, colonoscopies, and imaging techniques, are crucial for detecting early lesions and enabling timely intervention before cancer becomes invasive. Early detection greatly enhances treatment possibilities, such as surgery, radiation therapy, and chemotherapy, with surgery being the main approach for treating early-stage CRC. In this context, artificial intelligence (AI) has shown immense potential in revolutionizing CRC management, serving as one of the most effective screening tools. AI, utilizing machine learning (ML) and deep learning (DL) algorithms, improves early detection, diagnosis, and treatment by processing large volumes of medical data, uncovering hidden patterns, and forecasting disease development. DL, a more advanced form of ML, simulates the brain's processing power, enhancing the accuracy of tumor detection, differentiation, and prognosis predictions. These innovations offer the potential to revolutionize cancer care by boosting diagnostic accuracy, refining treatment approaches, and ultimately enhancing patient outcomes.</p>","PeriodicalId":12482,"journal":{"name":"Frontiers in Oncology","volume":"15 ","pages":"1499223"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893421/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fonc.2025.1499223","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC) is a prevalent malignant tumor in the digestive system. As reported in the 2020 global cancer statistics, CRC accounted for more than 1.9 million new cases and 935,000 deaths, making it the third most common cancer worldwide in terms of incidence and the second leading cause of cancer-related deaths globally. This poses a significant threat to global public health. Early screening methods, such as fecal occult blood tests, colonoscopies, and imaging techniques, are crucial for detecting early lesions and enabling timely intervention before cancer becomes invasive. Early detection greatly enhances treatment possibilities, such as surgery, radiation therapy, and chemotherapy, with surgery being the main approach for treating early-stage CRC. In this context, artificial intelligence (AI) has shown immense potential in revolutionizing CRC management, serving as one of the most effective screening tools. AI, utilizing machine learning (ML) and deep learning (DL) algorithms, improves early detection, diagnosis, and treatment by processing large volumes of medical data, uncovering hidden patterns, and forecasting disease development. DL, a more advanced form of ML, simulates the brain's processing power, enhancing the accuracy of tumor detection, differentiation, and prognosis predictions. These innovations offer the potential to revolutionize cancer care by boosting diagnostic accuracy, refining treatment approaches, and ultimately enhancing patient outcomes.
期刊介绍:
Cancer Imaging and Diagnosis is dedicated to the publication of results from clinical and research studies applied to cancer diagnosis and treatment. The section aims to publish studies from the entire field of cancer imaging: results from routine use of clinical imaging in both radiology and nuclear medicine, results from clinical trials, experimental molecular imaging in humans and small animals, research on new contrast agents in CT, MRI, ultrasound, publication of new technical applications and processing algorithms to improve the standardization of quantitative imaging and image guided interventions for the diagnosis and treatment of cancer.