Attaining high accuracy for charge-transfer excitations in non-covalent complexes at second-order perturbation cost: The importance of state-specific self-consistency.
{"title":"Attaining high accuracy for charge-transfer excitations in non-covalent complexes at second-order perturbation cost: The importance of state-specific self-consistency.","authors":"Nhan Tri Tran, Lan Nguyen Tran","doi":"10.1063/5.0246440","DOIUrl":null,"url":null,"abstract":"<p><p>Intermolecular charge-transfer (xCT) excited states important for various practical applications are challenging for many standard computational methods. It is highly desirable to have an affordable method that can treat xCT states accurately. In the present work, we extend our self-consistent perturbation methods, named one-body second-order Møller-Plesset and its spin-opposite scaling variant (O2BMP2), for excited states without additional costs to the ground state. We then assessed their performance for the prediction of xCT excitation energies. Thanks to self-consistency, our methods yield small errors relative to high-level coupled cluster methods and outperform other same scaling (N5) methods, such as CC2 and ADC(2). In particular, O2BMP2, whose scaling can be reduced to N4, can even reach the accuracy of CC3 (N7) with errors less than 0.1 eV. This method is thus highly promising for treating xCT states in large compounds vital for applications.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0246440","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Intermolecular charge-transfer (xCT) excited states important for various practical applications are challenging for many standard computational methods. It is highly desirable to have an affordable method that can treat xCT states accurately. In the present work, we extend our self-consistent perturbation methods, named one-body second-order Møller-Plesset and its spin-opposite scaling variant (O2BMP2), for excited states without additional costs to the ground state. We then assessed their performance for the prediction of xCT excitation energies. Thanks to self-consistency, our methods yield small errors relative to high-level coupled cluster methods and outperform other same scaling (N5) methods, such as CC2 and ADC(2). In particular, O2BMP2, whose scaling can be reduced to N4, can even reach the accuracy of CC3 (N7) with errors less than 0.1 eV. This method is thus highly promising for treating xCT states in large compounds vital for applications.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.