{"title":"Function domains and the universal matrix functional of multi-state density functional theory.","authors":"Yangyi Lu, Jiali Gao","doi":"10.1063/5.0249583","DOIUrl":null,"url":null,"abstract":"<p><p>On the basis of recent advancements in the Hamiltonian matrix density functional for multiple electronic eigenstates, this study delves into the mathematical foundation of the multistate density functional theory (MSDFT). We extend a number of physical concepts at the core of Kohn-Sham DFT, such as density representability, to the matrix density functional. In this work, we establish the existence of the universal matrix functional for many states as a proper generalization of the Lieb universal functional for the ground state. Consequently, the variation principle of MSDFT can be rigorously defined within an appropriate domain of matrix densities, thereby providing a solid framework for DFT of both the ground state and excited states. We further show that the analytical structure of the Hamiltonian matrix functional is considerably constrained by the subspace symmetry and invariance properties, requiring and ensuring that all elements of the Hamiltonian matrix functional are variationally optimized in a coherent manner until the Hamiltonian matrix within the subspace spanned by the lowest eigenstates is obtained. This work solidifies the theoretical foundation to treat multiple electronic states using density functional theory.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903056/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0249583","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
On the basis of recent advancements in the Hamiltonian matrix density functional for multiple electronic eigenstates, this study delves into the mathematical foundation of the multistate density functional theory (MSDFT). We extend a number of physical concepts at the core of Kohn-Sham DFT, such as density representability, to the matrix density functional. In this work, we establish the existence of the universal matrix functional for many states as a proper generalization of the Lieb universal functional for the ground state. Consequently, the variation principle of MSDFT can be rigorously defined within an appropriate domain of matrix densities, thereby providing a solid framework for DFT of both the ground state and excited states. We further show that the analytical structure of the Hamiltonian matrix functional is considerably constrained by the subspace symmetry and invariance properties, requiring and ensuring that all elements of the Hamiltonian matrix functional are variationally optimized in a coherent manner until the Hamiltonian matrix within the subspace spanned by the lowest eigenstates is obtained. This work solidifies the theoretical foundation to treat multiple electronic states using density functional theory.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.