Overcoming physiological trade-offs between flowering time and crop yield - strategies for a changing climate.

IF 5.6 2区 生物学 Q1 PLANT SCIENCES Journal of Experimental Botany Pub Date : 2025-03-11 DOI:10.1093/jxb/eraf110
Astrid Wingler, Soualihou Soualiou
{"title":"Overcoming physiological trade-offs between flowering time and crop yield - strategies for a changing climate.","authors":"Astrid Wingler, Soualihou Soualiou","doi":"10.1093/jxb/eraf110","DOIUrl":null,"url":null,"abstract":"<p><p>Early flowering of annual plants can lead to resource limitation owing to reduced uptake of nitrogen during the reproductive phase and declining foliar photosynthesis as a result of monocarpic senescence. Low availability of accumulated resources can therefore result in a trade-off between early flowering and reproductive fitness. However, green inflorescence organs (such as siliques, pods, bracts or awns) can make considerable contributions to photosynthetic carbon gain, and in some cases provide more carbon to seed formation than the leaves. Inflorescence photosynthesis may thereby overcome the flowering time trade-off. In addition to providing photosynthates, inflorescence organs can contribute to seed nitrogen through senescence-dependent nitrogen recycling. In annual crops, breeding has resulted in increased carbon allocation to the grain and higher harvest index, but in some cases, this had led to reduced grain protein content. We discuss different breeding targets to address carbon and nitrogen limitation, dependent on the climatic environment. For environments that are prone to drought, we propose a combination of early flowering with enhanced inflorescence photosynthesis, or, alternatively, delayed senescence (stay-green) associated with improved water balance. For optimized yield and grain protein content under favourable conditions, enhanced sink strength and extended nitrogen uptake are suggested as breeding targets.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf110","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Early flowering of annual plants can lead to resource limitation owing to reduced uptake of nitrogen during the reproductive phase and declining foliar photosynthesis as a result of monocarpic senescence. Low availability of accumulated resources can therefore result in a trade-off between early flowering and reproductive fitness. However, green inflorescence organs (such as siliques, pods, bracts or awns) can make considerable contributions to photosynthetic carbon gain, and in some cases provide more carbon to seed formation than the leaves. Inflorescence photosynthesis may thereby overcome the flowering time trade-off. In addition to providing photosynthates, inflorescence organs can contribute to seed nitrogen through senescence-dependent nitrogen recycling. In annual crops, breeding has resulted in increased carbon allocation to the grain and higher harvest index, but in some cases, this had led to reduced grain protein content. We discuss different breeding targets to address carbon and nitrogen limitation, dependent on the climatic environment. For environments that are prone to drought, we propose a combination of early flowering with enhanced inflorescence photosynthesis, or, alternatively, delayed senescence (stay-green) associated with improved water balance. For optimized yield and grain protein content under favourable conditions, enhanced sink strength and extended nitrogen uptake are suggested as breeding targets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
期刊最新文献
Root morphology, exudate patterns, and mycorrhizal symbiosis are determinants to improve phosphorus acquisition in alfalfa. Adjustments of plant primary metabolism in the face of climate change. Structural Coloration and Epicuticular Wax Properties of the Distinctive Glaucous Leaves of Encephalartos horridus. Function of Cytochrome P450 CYP72A1182 in Metabolic Herbicide Resistance Evolution in Amaranthus palmeri Populations. Mycorrhizae and grapevines: the known unknowns of their interaction for wine growers´ challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1