{"title":"A Thermally Controlled Ultra-Wideband Wide Incident Angle Metamaterial Absorber with Switchable Transmission at the THz Band.","authors":"Liansheng Wang, Fengkai Xin, Quanhong Fu, Dongyan Xia","doi":"10.3390/nano15050404","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate a thermally controlled ultra-wideband wide incident angle metamaterial absorber with switchable transmission at the THz band in this paper. The underlying hybrid structure of FSS-VO<sub>2</sub> thin films make them switchable between absorption mode and transmission mode by controlling the temperature. It can achieve ultra-wideband absorption with above 90% absorption from 1 THz to 10 THz and exhibits excellent absorption performance under a wide range of incident and polarization angles at a high temperature (80 °C). At room temperature (27 °C), it acts in transmission mode with a transmission coefficient of up to 60% at 3.1278 THz. The transmission region is inside the absorption band, which is very important for practical applications. The metamaterial absorber has the advantage of easy fabrication, an ultra-wideband, a wide incident angle, switchable multi-functions, and passivity with wide application prospects on terahertz communication and radar devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901589/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15050404","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate a thermally controlled ultra-wideband wide incident angle metamaterial absorber with switchable transmission at the THz band in this paper. The underlying hybrid structure of FSS-VO2 thin films make them switchable between absorption mode and transmission mode by controlling the temperature. It can achieve ultra-wideband absorption with above 90% absorption from 1 THz to 10 THz and exhibits excellent absorption performance under a wide range of incident and polarization angles at a high temperature (80 °C). At room temperature (27 °C), it acts in transmission mode with a transmission coefficient of up to 60% at 3.1278 THz. The transmission region is inside the absorption band, which is very important for practical applications. The metamaterial absorber has the advantage of easy fabrication, an ultra-wideband, a wide incident angle, switchable multi-functions, and passivity with wide application prospects on terahertz communication and radar devices.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.