{"title":"Soft, Stretchable, High-Sensitivity, Multi-Walled Carbon Nanotube-Based Strain Sensor for Joint Healthcare.","authors":"Zechen Guo, Xiaohe Hu, Yaqiong Chen, Yanwei Ma, Fuqun Zhao, Sheng Guo","doi":"10.3390/nano15050332","DOIUrl":null,"url":null,"abstract":"<p><p>Exoskeletons play a crucial role in joint healthcare by providing targeted support and rehabilitation for individuals with musculoskeletal diseases. As an assistive device, the accurate monitoring of the user's joint signals and exoskeleton status using wearable sensors is essential to ensure the efficiency of conducting complex tasks in various scenarios. However, balancing sensitivity and stretchability in wearable devices for exoskeleton applications remains a significant challenge. Here, we introduce a wearable strain sensor for detecting finger and knee joint motions. The sensor utilizes a stretchable elastic conductive network, incorporating multi-walled carbon nanotubes (MWCNTs) into Ecoflex. The concentration of MWCNTs has been meticulously optimized to achieve both a high gauge factor (GF) and stability. With its high sensitivity, the sensor is enabled to be applied in the angle monitoring of finger joints. By integrating the sensor with human knee joints and an exoskeleton device, it can simultaneously detect the flexion and extension movements in real-time. This sensor holds significant potential for enhancing exoskeleton performance and improving joint healthcare technologies.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901835/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15050332","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Exoskeletons play a crucial role in joint healthcare by providing targeted support and rehabilitation for individuals with musculoskeletal diseases. As an assistive device, the accurate monitoring of the user's joint signals and exoskeleton status using wearable sensors is essential to ensure the efficiency of conducting complex tasks in various scenarios. However, balancing sensitivity and stretchability in wearable devices for exoskeleton applications remains a significant challenge. Here, we introduce a wearable strain sensor for detecting finger and knee joint motions. The sensor utilizes a stretchable elastic conductive network, incorporating multi-walled carbon nanotubes (MWCNTs) into Ecoflex. The concentration of MWCNTs has been meticulously optimized to achieve both a high gauge factor (GF) and stability. With its high sensitivity, the sensor is enabled to be applied in the angle monitoring of finger joints. By integrating the sensor with human knee joints and an exoskeleton device, it can simultaneously detect the flexion and extension movements in real-time. This sensor holds significant potential for enhancing exoskeleton performance and improving joint healthcare technologies.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.