{"title":"Laser Irradiation and Property Correlation in Double-Lasing Processes on Laser-Induced Graphene Electrodes.","authors":"Tran Quoc Thang, Joohoon Kim","doi":"10.3390/nano15050333","DOIUrl":null,"url":null,"abstract":"<p><p>The fabrication of laser-induced graphene (LIG) electrodes by direct laser writing techniques has received considerable attention due to its simplicity, versatility, and cost-effectiveness for electrochemical applications in both sensing and energy storage. In general, a single-lasing irradiation process is used to prepare LIG electrodes. However, the intrinsic features of LIG can be further improved by taking advantage of additional lasing processes, even without any chemical treatments. In this work, we investigated the potential enhancement of LIG's electrochemical performance through a double-lasing irradiation process. This process does not require any chemical modification of the LIG to improve its electrochemical performance. Importantly, we revealed the correlation between laser irradiation and the properties of LIG electrodes prepared through the lasing process. We evaluated the characteristics of LIG electrodes prepared by the single-lasing and double-lasing irradiation regarding their microstructures and electrochemical features, including the sheet resistance (R<sub>S</sub>), specific areal capacitance (C<sub>A</sub>), peak-to-peak separation (Δ<i>E</i><sub>P</sub>), and peak current. The double-lasing LIG exhibited improved electrochemical properties, especially low R<sub>S</sub> and Δ<i>E</i><sub>P</sub> values. This improvement results from a higher degree of graphitization, making them advantageous for developing electrochemical sensors. This was demonstrated by the improved electrochemical sensing of H<sub>2</sub>O<sub>2</sub> using the double-lasing LIG.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901533/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15050333","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The fabrication of laser-induced graphene (LIG) electrodes by direct laser writing techniques has received considerable attention due to its simplicity, versatility, and cost-effectiveness for electrochemical applications in both sensing and energy storage. In general, a single-lasing irradiation process is used to prepare LIG electrodes. However, the intrinsic features of LIG can be further improved by taking advantage of additional lasing processes, even without any chemical treatments. In this work, we investigated the potential enhancement of LIG's electrochemical performance through a double-lasing irradiation process. This process does not require any chemical modification of the LIG to improve its electrochemical performance. Importantly, we revealed the correlation between laser irradiation and the properties of LIG electrodes prepared through the lasing process. We evaluated the characteristics of LIG electrodes prepared by the single-lasing and double-lasing irradiation regarding their microstructures and electrochemical features, including the sheet resistance (RS), specific areal capacitance (CA), peak-to-peak separation (ΔEP), and peak current. The double-lasing LIG exhibited improved electrochemical properties, especially low RS and ΔEP values. This improvement results from a higher degree of graphitization, making them advantageous for developing electrochemical sensors. This was demonstrated by the improved electrochemical sensing of H2O2 using the double-lasing LIG.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.