Logic and static memory functions of an inverter comprising a feedback field effect transistor.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2025-03-11 DOI:10.1088/1361-6528/adbf27
Daon Kim, Doohyeok Lim
{"title":"Logic and static memory functions of an inverter comprising a feedback field effect transistor.","authors":"Daon Kim, Doohyeok Lim","doi":"10.1088/1361-6528/adbf27","DOIUrl":null,"url":null,"abstract":"<p><p>The von Neumann architecture used as the basic operating principle in computers has a bottleneck owing to the disparity between the central processing unit and memory access speeds, which leads to high power consumption and speed reduction, reducing the overall system performance. However, feedback field-effect transistors (FBFETs) have attracted significant attention owing to their potential to realize next-generation electronic devices based on their switching characteristics. Therefore, in this study, we configured the logic and static memory functions of an inverter comprising a pull-up resistor and an n-channel feedback field-effect transistor using a mixed-mode simulation. The FBFET has a p-n-p-n structure with a gated p-region on the silicon-on-insulator, where each channel length is 30 nm. These modes can have an on/off current ratio of ~ 10^11 and a subthreshold swing (SS) of less than 5.4 mV/dec. The proposed device can perform logic operations and static memory functions, exhibiting excellent memory functions such as fast write, long hold, and non-destructive read operations. In addition, the inverter operation exhibits nanosecond-level speed and the ability to maintain non-destructive read functionality for over 100 s. The proposed n-FBFET-based inverter is expected to be a promising technology for future high-speed, low-power logic memory applications.&#xD.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adbf27","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The von Neumann architecture used as the basic operating principle in computers has a bottleneck owing to the disparity between the central processing unit and memory access speeds, which leads to high power consumption and speed reduction, reducing the overall system performance. However, feedback field-effect transistors (FBFETs) have attracted significant attention owing to their potential to realize next-generation electronic devices based on their switching characteristics. Therefore, in this study, we configured the logic and static memory functions of an inverter comprising a pull-up resistor and an n-channel feedback field-effect transistor using a mixed-mode simulation. The FBFET has a p-n-p-n structure with a gated p-region on the silicon-on-insulator, where each channel length is 30 nm. These modes can have an on/off current ratio of ~ 10^11 and a subthreshold swing (SS) of less than 5.4 mV/dec. The proposed device can perform logic operations and static memory functions, exhibiting excellent memory functions such as fast write, long hold, and non-destructive read operations. In addition, the inverter operation exhibits nanosecond-level speed and the ability to maintain non-destructive read functionality for over 100 s. The proposed n-FBFET-based inverter is expected to be a promising technology for future high-speed, low-power logic memory applications. .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
A critical review on printed electronics and its application. Recent advances in MXene catalyst towards enhanced hydrogen storage of Mg/MgH2: a review. Logic and static memory functions of an inverter comprising a feedback field effect transistor. Capacitance effects of nanopore chips on ionic current modulation and noise characteristics. Effect of capping on the Dirac semimetal Cd3As2on Si grown via molecular beam epitaxy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1