Highly Pathogenic Avian Influenza Virus in Mammals: Lack of Detection in Cattle With Respiratory Tract Infections and Genetic Analysis of Sporadic Spillover Infections in Wild Mammals in Bavaria, Southern Germany, 2022-2023.
{"title":"Highly Pathogenic Avian Influenza Virus in Mammals: Lack of Detection in Cattle With Respiratory Tract Infections and Genetic Analysis of Sporadic Spillover Infections in Wild Mammals in Bavaria, Southern Germany, 2022-2023.","authors":"Natali Paravinja, Lorena Herrmann, Isabella Dzijan, Monika Rinder, Antonie Neubauer-Juric","doi":"10.1111/zph.13217","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In 2021, the H5N1 clade 2.3.4.4b Avian Influenza Viruses (AIVs) emerged on the American continent. At the same time, a further global spread took place. Infections have been reported in avian species as well as in over 50 mammalian species in 26 countries, and often result in severe disease with notable neurological pathology. Outbreaks in dairy cattle in the United States in 2024 illustrate viral transmission at a non-traditional interface and cross-species transmission. This development raises significant global concern regarding the virus's potential for wider spread. Given that H5N1 infections in birds reached record-high levels in Germany by late 2022, it is important to investigate whether Influenza A Virus (IAV) infections were also occurring in mammals sharing habitats with wild birds.</p><p><strong>Methods and results: </strong>Selected wild and domestic mammal populations were monitored over a two-year period (from January 2022 to December 2023), which coincided with a major infection period in wild birds in Bavaria. Genomes of Highly Pathogenic Avian IAV H5N1 (clade 2.3.4.4b) were detected in red foxes but not in samples from ruminants such as red deer or domestic cattle. Analyses of viral whole genome sequences revealed several mutations associated with mammalian adaptation.</p><p><strong>Conclusion: </strong>Our results indicate a high frequency of spillover events to red foxes at a time when there was a peak of H5N1 infections in wild birds in Bavaria. Phylogenetic analyses show no specifically close genetic relationship between viruses detected in mammalian predators within a geographic area. While direct fox-to-fox transmission has not yet been reported, the H5N1 clade 2.3.4.4b AIVs' ability to spread through non-traditional interfaces and to cross species barriers underlines the importance of continuous IAV surveillance in mammals and possibly including previously unknown host species.</p>","PeriodicalId":24025,"journal":{"name":"Zoonoses and Public Health","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoonoses and Public Health","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/zph.13217","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: In 2021, the H5N1 clade 2.3.4.4b Avian Influenza Viruses (AIVs) emerged on the American continent. At the same time, a further global spread took place. Infections have been reported in avian species as well as in over 50 mammalian species in 26 countries, and often result in severe disease with notable neurological pathology. Outbreaks in dairy cattle in the United States in 2024 illustrate viral transmission at a non-traditional interface and cross-species transmission. This development raises significant global concern regarding the virus's potential for wider spread. Given that H5N1 infections in birds reached record-high levels in Germany by late 2022, it is important to investigate whether Influenza A Virus (IAV) infections were also occurring in mammals sharing habitats with wild birds.
Methods and results: Selected wild and domestic mammal populations were monitored over a two-year period (from January 2022 to December 2023), which coincided with a major infection period in wild birds in Bavaria. Genomes of Highly Pathogenic Avian IAV H5N1 (clade 2.3.4.4b) were detected in red foxes but not in samples from ruminants such as red deer or domestic cattle. Analyses of viral whole genome sequences revealed several mutations associated with mammalian adaptation.
Conclusion: Our results indicate a high frequency of spillover events to red foxes at a time when there was a peak of H5N1 infections in wild birds in Bavaria. Phylogenetic analyses show no specifically close genetic relationship between viruses detected in mammalian predators within a geographic area. While direct fox-to-fox transmission has not yet been reported, the H5N1 clade 2.3.4.4b AIVs' ability to spread through non-traditional interfaces and to cross species barriers underlines the importance of continuous IAV surveillance in mammals and possibly including previously unknown host species.
期刊介绍:
Zoonoses and Public Health brings together veterinary and human health researchers and policy-makers by providing a venue for publishing integrated and global approaches to zoonoses and public health. The Editors will consider papers that focus on timely collaborative and multi-disciplinary research in zoonoses and public health. This journal provides rapid publication of original papers, reviews, and potential discussion papers embracing this collaborative spirit. Papers should advance the scientific knowledge of the sources, transmission, prevention and control of zoonoses and be authored by scientists with expertise in areas such as microbiology, virology, parasitology and epidemiology. Articles that incorporate recent data into new methods, applications, or approaches (e.g. statistical modeling) which enhance public health are strongly encouraged.