Development and Validation of Machine Learning Models for Outcome Prediction in Patients with Poor-Grade Aneurysmal Subarachnoid Hemorrhage Following Endovascular Treatment.
Senlin Du, Yanze Wu, Jiarong Tao, Lei Shu, Tengfeng Yan, Bing Xiao, Shigang Lv, Minhua Ye, Yanyan Gong, Xingen Zhu, Ping Hu, Miaojing Wu
{"title":"Development and Validation of Machine Learning Models for Outcome Prediction in Patients with Poor-Grade Aneurysmal Subarachnoid Hemorrhage Following Endovascular Treatment.","authors":"Senlin Du, Yanze Wu, Jiarong Tao, Lei Shu, Tengfeng Yan, Bing Xiao, Shigang Lv, Minhua Ye, Yanyan Gong, Xingen Zhu, Ping Hu, Miaojing Wu","doi":"10.2147/TCRM.S504745","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Endovascular treatment (EVT) has been recommended as a superior modality for the treatment of intracranial aneurysm. However, there still exists a worse percentage of poor functional outcome in patients with poor-grade aneurysmal subarachnoid hemorrhage (aSAH) undergoing EVT. Therefore, it is urgently needed to investigate the risk factors and develop a critical decision model in the subtype of such patients.</p><p><strong>Methods: </strong>We extracted the target variables from an ongoing registry cohort study, PROSAH-MPC, which was conducted in multiple centers in China. We randomly assigned these patients to training and validation cohorts with a ratio of 7:3. Univariate and multivariate logistic regressions were performed to find the potential factors, and then nine machine learning models and a stack ensemble model were developed with optimized variables. The performance of these models was evaluated through several indicators, including area under the receiver operating characteristic curve (AUC-ROC). We further use Shapley Additive Explanations (SHAP) methods for the distribution of feature visualization based on the optimal models.</p><p><strong>Results: </strong>A total of 226 eligible patients with poor-grade aSAH undergoing EVT were enrolled, while 89 (39.4%) has a poor 12-month outcome. Age (Adjusted OR [aOR], 1.08; 95% CI: 1.03-1.13; p = 0.002), subarachnoid hemorrhage volume (aOR, 1.02; 95% CI: 1.00-1.05; p = 0.033), World Federation of Neurosurgical Societies grade (WFNS) (aOR, 2.03; 95% CI: 1.05-3.93; p = 0.035), and Hunt-Hess grade (aOR, 2.36; 95% CI: 1.13-4.93; p = 0.022) were identified as the independent risk factors of the poor outcome. Then, the prediction models developed have revealed that LightGBM algorithm has a superior performance with an AUC-ROC value of 0.842 in the validation cohort, while the SHAP results showed that age is the most important risk factor affecting functional outcomes.</p><p><strong>Conclusion: </strong>The LightGBM model holds immense potential in facilitating risk stratification for poor-grade aSAH patients undergoing endovascular treatment who are at risk of adverse outcomes, thereby enhancing clinical decision-making processes.</p><p><strong>Trial registration: </strong>PROSAH-MPC. NCT05738083. Registered 16 November 2022 - Retrospectively registered, https://clinicaltrials.gov/study/NCT05738083.</p>","PeriodicalId":22977,"journal":{"name":"Therapeutics and Clinical Risk Management","volume":"21 ","pages":"293-307"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895686/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutics and Clinical Risk Management","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/TCRM.S504745","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Endovascular treatment (EVT) has been recommended as a superior modality for the treatment of intracranial aneurysm. However, there still exists a worse percentage of poor functional outcome in patients with poor-grade aneurysmal subarachnoid hemorrhage (aSAH) undergoing EVT. Therefore, it is urgently needed to investigate the risk factors and develop a critical decision model in the subtype of such patients.
Methods: We extracted the target variables from an ongoing registry cohort study, PROSAH-MPC, which was conducted in multiple centers in China. We randomly assigned these patients to training and validation cohorts with a ratio of 7:3. Univariate and multivariate logistic regressions were performed to find the potential factors, and then nine machine learning models and a stack ensemble model were developed with optimized variables. The performance of these models was evaluated through several indicators, including area under the receiver operating characteristic curve (AUC-ROC). We further use Shapley Additive Explanations (SHAP) methods for the distribution of feature visualization based on the optimal models.
Results: A total of 226 eligible patients with poor-grade aSAH undergoing EVT were enrolled, while 89 (39.4%) has a poor 12-month outcome. Age (Adjusted OR [aOR], 1.08; 95% CI: 1.03-1.13; p = 0.002), subarachnoid hemorrhage volume (aOR, 1.02; 95% CI: 1.00-1.05; p = 0.033), World Federation of Neurosurgical Societies grade (WFNS) (aOR, 2.03; 95% CI: 1.05-3.93; p = 0.035), and Hunt-Hess grade (aOR, 2.36; 95% CI: 1.13-4.93; p = 0.022) were identified as the independent risk factors of the poor outcome. Then, the prediction models developed have revealed that LightGBM algorithm has a superior performance with an AUC-ROC value of 0.842 in the validation cohort, while the SHAP results showed that age is the most important risk factor affecting functional outcomes.
Conclusion: The LightGBM model holds immense potential in facilitating risk stratification for poor-grade aSAH patients undergoing endovascular treatment who are at risk of adverse outcomes, thereby enhancing clinical decision-making processes.
期刊介绍:
Therapeutics and Clinical Risk Management is an international, peer-reviewed journal of clinical therapeutics and risk management, focusing on concise rapid reporting of clinical studies in all therapeutic areas, outcomes, safety, and programs for the effective, safe, and sustained use of medicines, therapeutic and surgical interventions in all clinical areas.
The journal welcomes submissions covering original research, clinical and epidemiological studies, reviews, guidelines, expert opinion and commentary. The journal will consider case reports but only if they make a valuable and original contribution to the literature.
As of 18th March 2019, Therapeutics and Clinical Risk Management will no longer consider meta-analyses for publication.
The journal does not accept study protocols, animal-based or cell line-based studies.