Preoperative CT-based Radiomics Model for Predicting Micropapillary/Solid Patterns in Stage I Peripheral Lung Invasive Adenocarcinoma: A Propensity Score Matching Study.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Thoracic Imaging Pub Date : 2025-03-12 DOI:10.1097/RTI.0000000000000826
Yachao Ruan, Meirong Li, Zhan Feng, Lvbin Xie, Fangyu Sun, Fenhua Zhao, Feng Chen
{"title":"Preoperative CT-based Radiomics Model for Predicting Micropapillary/Solid Patterns in Stage I Peripheral Lung Invasive Adenocarcinoma: A Propensity Score Matching Study.","authors":"Yachao Ruan, Meirong Li, Zhan Feng, Lvbin Xie, Fangyu Sun, Fenhua Zhao, Feng Chen","doi":"10.1097/RTI.0000000000000826","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop and validate an accurate computed tomography-based radiomics model for predicting high-grade (micropapillary/solid) patterns in T1-stage lung invasive adenocarcinoma (IAC) after propensity score matching (PSM).</p><p><strong>Materials and methods: </strong>We enrolled 546 participants from 2 cohorts with histologically diagnosed lung IAC after complete surgical resection between January 2020 and August 2021. The patients were divided into high-grade and non-high-grade groups and matched using PSM. Matched patient HRCT images were used to delineate regions of interest from tumors and extract radiomics features, and the random forest method was used to construct a radiomics model. The area under the receiver operating characteristic curve (area under the curve) was used to evaluate the model's performance, and external validation was performed to assess the model's generalizability.</p><p><strong>Results: </strong>Before PSM, there was no statistically significant difference in age between the two groups, though nodule type and sex exhibited significant differences (P < 0.05) in both cohorts. After PSM, we matched 176 and 97 pairs of patients in the 2 cohorts. In both cohorts, sex and nodule type were equal between the two groups, with a higher percentage of males and solid nodules in both groups. Our model exhibited moderate predictive performance after PSM, with area under the curve values of 0.75 (95% CI: 0.70-0.80) and 0.71 (95% CI: 0.63-0.80) for the development and external validation cohorts, respectively.</p><p><strong>Conclusion: </strong>Although the nodule type compromised the validity of the model's performance, our results suggest that our acute computed tomography-based radiomics model could preoperatively predict micropapillary/solid patterns in patients with stage I lung IAC after PSM.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thoracic Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RTI.0000000000000826","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To develop and validate an accurate computed tomography-based radiomics model for predicting high-grade (micropapillary/solid) patterns in T1-stage lung invasive adenocarcinoma (IAC) after propensity score matching (PSM).

Materials and methods: We enrolled 546 participants from 2 cohorts with histologically diagnosed lung IAC after complete surgical resection between January 2020 and August 2021. The patients were divided into high-grade and non-high-grade groups and matched using PSM. Matched patient HRCT images were used to delineate regions of interest from tumors and extract radiomics features, and the random forest method was used to construct a radiomics model. The area under the receiver operating characteristic curve (area under the curve) was used to evaluate the model's performance, and external validation was performed to assess the model's generalizability.

Results: Before PSM, there was no statistically significant difference in age between the two groups, though nodule type and sex exhibited significant differences (P < 0.05) in both cohorts. After PSM, we matched 176 and 97 pairs of patients in the 2 cohorts. In both cohorts, sex and nodule type were equal between the two groups, with a higher percentage of males and solid nodules in both groups. Our model exhibited moderate predictive performance after PSM, with area under the curve values of 0.75 (95% CI: 0.70-0.80) and 0.71 (95% CI: 0.63-0.80) for the development and external validation cohorts, respectively.

Conclusion: Although the nodule type compromised the validity of the model's performance, our results suggest that our acute computed tomography-based radiomics model could preoperatively predict micropapillary/solid patterns in patients with stage I lung IAC after PSM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Thoracic Imaging
Journal of Thoracic Imaging 医学-核医学
CiteScore
7.10
自引率
9.10%
发文量
87
审稿时长
6-12 weeks
期刊介绍: Journal of Thoracic Imaging (JTI) provides authoritative information on all aspects of the use of imaging techniques in the diagnosis of cardiac and pulmonary diseases. Original articles and analytical reviews published in this timely journal provide the very latest thinking of leading experts concerning the use of chest radiography, computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and all other promising imaging techniques in cardiopulmonary radiology. Official Journal of the Society of Thoracic Radiology: Japanese Society of Thoracic Radiology Korean Society of Thoracic Radiology European Society of Thoracic Imaging.
期刊最新文献
Acute Pulmonary Injury: An Imaging and Clinical Review. Preoperative CT-based Radiomics Model for Predicting Micropapillary/Solid Patterns in Stage I Peripheral Lung Invasive Adenocarcinoma: A Propensity Score Matching Study. Automated 3D-Body Composition Analysis as a Predictor of Survival in Patients With Idiopathic Pulmonary Fibrosis. Optimizing Quantum Iterative Reconstruction for Ultra-high-resolution Photon-counting Computed Tomography of the Lung. Automatic Quantification of Abnormal Lung Parenchymal Attenuation on Chest Computed Tomography Images Using Densitometry and Texture-based Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1