Branched-chain amino acid catabolism promotes ovarian cancer cell proliferation via phosphorylation of mTOR.

IF 2 Q3 ONCOLOGY Cancer research communications Pub Date : 2025-03-11 DOI:10.1158/2767-9764.CRC-24-0532
Hannah J Lusk, Monica A Haughan, Tova M Bergsten, Joanna E Burdette, Laura M Sanchez
{"title":"Branched-chain amino acid catabolism promotes ovarian cancer cell proliferation via phosphorylation of mTOR.","authors":"Hannah J Lusk, Monica A Haughan, Tova M Bergsten, Joanna E Burdette, Laura M Sanchez","doi":"10.1158/2767-9764.CRC-24-0532","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer is the sixth leading cause of cancer-related mortality among individuals with ovaries, and high-grade serous ovarian cancer (HGSOC) is the most common and lethal subtype. Characterized by a distinct and aggressive metastatic pattern, HGSOC can originate in the fallopian tube with the transformation of fallopian tube epithelial (FTE) cells, which metastasize to the ovary and subsequently to the omentum and peritoneal cavity. The omentum is a privileged metastatic site, and the metabolic exchange underlying omental metastasis could provide enzyme or receptor targets to block spread. In this study, we adapted a mass spectrometry imaging (MSI) protocol to investigate spatial location of 3D cocultures of tumorigenic FTE cells when grown in proximity to murine omental explants as a model of early metastatic colonization. Our analysis revealed several altered metabolites in tumorigenic FTE/omentum cocultures, namely changes in branched-chain amino acids (BCAA), including valine. We quantified the heightened consumption of valine, other BCAAs, and other amino acid-derived metabolites in omental cocultures using LC-MS assays. Our analysis revealed that metabolite concentrations when monitored with MSI from cell culture media in living culture systems have notable considerations for how MSI data may produce signatures that induce ionization suppression. Supplementation with valine enhanced proliferation and mTOR signaling in tumorigenic FTE cells, suggesting the potential of BCAA's as a nutrient utilized by tumor cells during omental colonization and a possible target for metastasis.</p>","PeriodicalId":72516,"journal":{"name":"Cancer research communications","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2767-9764.CRC-24-0532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ovarian cancer is the sixth leading cause of cancer-related mortality among individuals with ovaries, and high-grade serous ovarian cancer (HGSOC) is the most common and lethal subtype. Characterized by a distinct and aggressive metastatic pattern, HGSOC can originate in the fallopian tube with the transformation of fallopian tube epithelial (FTE) cells, which metastasize to the ovary and subsequently to the omentum and peritoneal cavity. The omentum is a privileged metastatic site, and the metabolic exchange underlying omental metastasis could provide enzyme or receptor targets to block spread. In this study, we adapted a mass spectrometry imaging (MSI) protocol to investigate spatial location of 3D cocultures of tumorigenic FTE cells when grown in proximity to murine omental explants as a model of early metastatic colonization. Our analysis revealed several altered metabolites in tumorigenic FTE/omentum cocultures, namely changes in branched-chain amino acids (BCAA), including valine. We quantified the heightened consumption of valine, other BCAAs, and other amino acid-derived metabolites in omental cocultures using LC-MS assays. Our analysis revealed that metabolite concentrations when monitored with MSI from cell culture media in living culture systems have notable considerations for how MSI data may produce signatures that induce ionization suppression. Supplementation with valine enhanced proliferation and mTOR signaling in tumorigenic FTE cells, suggesting the potential of BCAA's as a nutrient utilized by tumor cells during omental colonization and a possible target for metastasis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Age and sex differences in the prevalence of specific comorbidities among pediatric acute lymphoblastic leukemia and lymphoblastic lymphoma patients at diagnosis. Branched-chain amino acid catabolism promotes ovarian cancer cell proliferation via phosphorylation of mTOR. LNS8801: An enantiomerically pure agonist of the G protein-coupled estrogen receptor suitable for clinical development. OATP1B-type transport function is a determinant of aromatase inhibitor-associated arthralgia susceptibility. IMGN853 induces autophagic cell death in combination therapy for ovarian cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1