Transplanting neural stem cells overexpressing miRNA-21 can promote neural recovery after cerebral hemorrhage through the SOX2/LIN28-let-7 signaling pathway.

Q1 Health Professions Animal models and experimental medicine Pub Date : 2025-03-12 DOI:10.1002/ame2.70009
Wei Dai, Yongxia Li, Jiarui Du, Gang Shen, Meimei Fan, Zuopeng Su, Fulin Xu, Fang Yuan
{"title":"Transplanting neural stem cells overexpressing miRNA-21 can promote neural recovery after cerebral hemorrhage through the SOX2/LIN28-let-7 signaling pathway.","authors":"Wei Dai, Yongxia Li, Jiarui Du, Gang Shen, Meimei Fan, Zuopeng Su, Fulin Xu, Fang Yuan","doi":"10.1002/ame2.70009","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intracerebral hemorrhage (ICH) remains a devastating neurological disorder with limited therapeutic options. Neural stem cell (NSC)-based therapies have emerged as a potential regenerative approach, yet the molecular mechanisms regulating NSC behavior require further elucidation. The role of miR-21 in NSC differentiation and proliferation during ICH recovery remains unexplored.</p><p><strong>Methods: </strong>In vitro NSC cultures were analyzed for miR-21 expression dynamics during differentiation via qPCR. Lentiviral overexpression and knockdown of miR-21 were employed to assess its functional impact. The SOX2/LIN28-let-7 pathway was investigated using Western blot, luciferase reporter assays, and immunofluorescence. In vivo, miR-21-overexpressing NSCs were transplanted into a murine ICH model, with neurogenesis evaluated by immunostaining and neurological recovery assessed through behavioral tests (mNSS, rotarod).</p><p><strong>Results: </strong>miR-21 expression significantly increased during NSC differentiation, correlating with reduced SOX2 levels. Mechanistically, miR-21 directly targeted SOX2, disrupting the SOX2/LIN28-let-7 axis to promote NSC proliferation and lineage commitment. In ICH mice, transplantation of miR-21-overexpressing NSCs enhanced neurogenesis and improved motor coordination and neurological deficits at 28 days post-transplantation.</p><p><strong>Conclusions: </strong>Our findings identify miR-21 as a critical regulator of NSC plasticity through SOX2/LIN28-let-7 signaling, highlighting its therapeutic potential for enhancing neuroregeneration and functional recovery in ICH. Targeting miR-21 may represent a novel strategy to optimize NSC-based therapies for hemorrhagic stroke.</p>","PeriodicalId":93869,"journal":{"name":"Animal models and experimental medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal models and experimental medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ame2.70009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Intracerebral hemorrhage (ICH) remains a devastating neurological disorder with limited therapeutic options. Neural stem cell (NSC)-based therapies have emerged as a potential regenerative approach, yet the molecular mechanisms regulating NSC behavior require further elucidation. The role of miR-21 in NSC differentiation and proliferation during ICH recovery remains unexplored.

Methods: In vitro NSC cultures were analyzed for miR-21 expression dynamics during differentiation via qPCR. Lentiviral overexpression and knockdown of miR-21 were employed to assess its functional impact. The SOX2/LIN28-let-7 pathway was investigated using Western blot, luciferase reporter assays, and immunofluorescence. In vivo, miR-21-overexpressing NSCs were transplanted into a murine ICH model, with neurogenesis evaluated by immunostaining and neurological recovery assessed through behavioral tests (mNSS, rotarod).

Results: miR-21 expression significantly increased during NSC differentiation, correlating with reduced SOX2 levels. Mechanistically, miR-21 directly targeted SOX2, disrupting the SOX2/LIN28-let-7 axis to promote NSC proliferation and lineage commitment. In ICH mice, transplantation of miR-21-overexpressing NSCs enhanced neurogenesis and improved motor coordination and neurological deficits at 28 days post-transplantation.

Conclusions: Our findings identify miR-21 as a critical regulator of NSC plasticity through SOX2/LIN28-let-7 signaling, highlighting its therapeutic potential for enhancing neuroregeneration and functional recovery in ICH. Targeting miR-21 may represent a novel strategy to optimize NSC-based therapies for hemorrhagic stroke.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Cover Picture Issue Information Transplanting neural stem cells overexpressing miRNA-21 can promote neural recovery after cerebral hemorrhage through the SOX2/LIN28-let-7 signaling pathway. Identification of bioactive compounds and molecular targets of Fuke Huahuang formulation to treat vaginitis. Disruption of the blood-brain barrier contributes to neurobehavioral changes observed in rheumatic heart disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1