Le Bo , Xiaoyu Gao , Wenjing Song , Zhiliang Ning , Jianfei Sun , Alfonso H.W. Ngan , Yongjiang Huang
{"title":"Size-dependent mechanical behaviors and mechanisms in CoCrFeNi microfibers","authors":"Le Bo , Xiaoyu Gao , Wenjing Song , Zhiliang Ning , Jianfei Sun , Alfonso H.W. Ngan , Yongjiang Huang","doi":"10.1016/j.ijplas.2025.104307","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy alloys (HEAs) exhibit a wide diversity of crystalline defects for property control. Fabricating HEAs in microfiber forms further enhances property controllability due to intrinsic and extrinsic size effects. In this study, CoCrFeNi high entropy alloy microfibers with 30–100 μm diameters (<em>D</em>) and grain sizes (<em>d</em>) of 2.1–60.6 μm, were obtained through drawing, electric current annealing, and electropolishing, and subjected to uniaxial tensile testing. As <em>D</em>/<em>d</em> > 3, the yield strength obeys the Hall-Petch relation concerning <em>d</em> and a smaller-is-weaker effect or is insensitive to <em>D</em>. When <em>D</em>/<em>d</em> < 3, the yield strength deviates positively from the Hall-Petch relationship with respect to <em>d</em> and a smaller-is-stronger effect to <em>D</em>. The <em>D</em>/<em>d</em> > 3 behavior is due to grain boundary strengthening and surface-grain softening, while the <em>D</em>/<em>d</em> < 3 behavior is driven by reduced dislocation accumulation and size effects influenced by the limited number of grains spanning the diameter. These findings illustrate that in small-diameter microfibers, strengthening and weakening mechanisms intertwine to yield complex size effects, thus offering the potential to tailor the mechanical properties of micro-sized polycrystalline components through grain-size control and external-size adjustment.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"188 ","pages":"Article 104307"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S074964192500066X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-entropy alloys (HEAs) exhibit a wide diversity of crystalline defects for property control. Fabricating HEAs in microfiber forms further enhances property controllability due to intrinsic and extrinsic size effects. In this study, CoCrFeNi high entropy alloy microfibers with 30–100 μm diameters (D) and grain sizes (d) of 2.1–60.6 μm, were obtained through drawing, electric current annealing, and electropolishing, and subjected to uniaxial tensile testing. As D/d > 3, the yield strength obeys the Hall-Petch relation concerning d and a smaller-is-weaker effect or is insensitive to D. When D/d < 3, the yield strength deviates positively from the Hall-Petch relationship with respect to d and a smaller-is-stronger effect to D. The D/d > 3 behavior is due to grain boundary strengthening and surface-grain softening, while the D/d < 3 behavior is driven by reduced dislocation accumulation and size effects influenced by the limited number of grains spanning the diameter. These findings illustrate that in small-diameter microfibers, strengthening and weakening mechanisms intertwine to yield complex size effects, thus offering the potential to tailor the mechanical properties of micro-sized polycrystalline components through grain-size control and external-size adjustment.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.