Tatsuya Hayashi, Shigeki Matsumoto, Yuki Watanabe, Tsutomu T. Yanagida
{"title":"Gauge U(1)B−L dark matter above the e−e+ threshold","authors":"Tatsuya Hayashi, Shigeki Matsumoto, Yuki Watanabe, Tsutomu T. Yanagida","doi":"10.1103/physrevd.111.055012","DOIUrl":null,"url":null,"abstract":"The new gauge boson introduced in the minimal extension of the standard model (SM) by gauging the U</a:mi>(</a:mo>1</a:mn>)</a:mo></a:mrow>B</a:mi>−</a:mo>L</a:mi></a:mrow></a:msub></a:mrow></a:math> symmetry plays the role of dark matter when the <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:mrow><h:msub><h:mrow><h:mi mathvariant=\"normal\">U</h:mi><h:mo stretchy=\"false\">(</h:mo><h:mn>1</h:mn><h:mo stretchy=\"false\">)</h:mo></h:mrow><h:mrow><h:mi mathvariant=\"normal\">B</h:mi><h:mo>−</h:mo><h:mi mathvariant=\"normal\">L</h:mi></h:mrow></h:msub></h:mrow></h:math> gauge coupling is highly suppressed. This dark matter, named the Féeton dark matter is known to be efficiently created in the early Universe by inflationary fluctuations with minimal gravity coupling, hence the framework, the gauged <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mrow><o:msub><o:mrow><o:mi mathvariant=\"normal\">U</o:mi><o:mo stretchy=\"false\">(</o:mo><o:mn>1</o:mn><o:mo stretchy=\"false\">)</o:mo></o:mrow><o:mrow><o:mi mathvariant=\"normal\">B</o:mi><o:mo>−</o:mo><o:mi mathvariant=\"normal\">L</o:mi></o:mrow></o:msub></o:mrow></o:math> extended <v:math xmlns:v=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><v:mrow><v:mi>SM</v:mi><v:mo>+</v:mo><v:mtext>inflation</v:mtext></v:mrow></v:math>, solves the four major problems of the SM; neutrino masses/mixings, dark matter, baryon asymmetry of the Universe, and the initial condition of the Universe (inflation). We comprehensively study the phenomenology of the dark matter when it is heavier than the <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:msup><x:mi>e</x:mi><x:mo>−</x:mo></x:msup><x:msup><x:mi>e</x:mi><x:mo>+</x:mo></x:msup></x:math> threshold, namely twice the electron mass, considering the threshold effect on the dark matter decay into <z:math xmlns:z=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><z:msup><z:mi>e</z:mi><z:mo>−</z:mo></z:msup><z:msup><z:mi>e</z:mi><z:mo>+</z:mo></z:msup></z:math>. The viable parameter region is found only in the threshold region, while the branching fraction of the decay into <bb:math xmlns:bb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><bb:msup><bb:mi>e</bb:mi><bb:mo>−</bb:mo></bb:msup><bb:msup><bb:mi>e</bb:mi><bb:mo>+</bb:mo></bb:msup></bb:math> (i.e., the <db:math xmlns:db=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><db:msup><db:mi>e</db:mi><db:mo>−</db:mo></db:msup><db:msup><db:mi>e</db:mi><db:mo>+</db:mo></db:msup></db:math> signal) never vanishes even at the threshold due to the effect. As a result, the pure <fb:math xmlns:fb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fb:mrow><fb:msub><fb:mrow><fb:mi mathvariant=\"normal\">U</fb:mi><fb:mo stretchy=\"false\">(</fb:mo><fb:mn>1</fb:mn><fb:mo stretchy=\"false\">)</fb:mo></fb:mrow><fb:mrow><fb:mi mathvariant=\"normal\">B</fb:mi><fb:mo>−</fb:mo><fb:mi mathvariant=\"normal\">L</fb:mi></fb:mrow></fb:msub></fb:mrow></fb:math> extension without the kinetic mixing between the <mb:math xmlns:mb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mb:mrow><mb:msub><mb:mrow><mb:mi mathvariant=\"normal\">U</mb:mi><mb:mo stretchy=\"false\">(</mb:mo><mb:mn>1</mb:mn><mb:mo stretchy=\"false\">)</mb:mo></mb:mrow><mb:mrow><mb:mi mathvariant=\"normal\">B</mb:mi><mb:mo>−</mb:mo><mb:mi mathvariant=\"normal\">L</mb:mi></mb:mrow></mb:msub></mb:mrow></mb:math> and hypercharge gauge bosons have already been excluded by the present observation of the 511 keV photon from the galactic center. So, the Féeton dark matter requires a nonzero kinetic mixing to be a viable dark matter candidate and will be efficiently explored by future MeV-gamma ray telescopes thanks to the nonvanishing decay process into <tb:math xmlns:tb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><tb:msup><tb:mi>e</tb:mi><tb:mo>−</tb:mo></tb:msup><tb:msup><tb:mi>e</tb:mi><tb:mo>+</tb:mo></tb:msup></tb:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"8 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.055012","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The new gauge boson introduced in the minimal extension of the standard model (SM) by gauging the U(1)B−L symmetry plays the role of dark matter when the U(1)B−L gauge coupling is highly suppressed. This dark matter, named the Féeton dark matter is known to be efficiently created in the early Universe by inflationary fluctuations with minimal gravity coupling, hence the framework, the gauged U(1)B−L extended SM+inflation, solves the four major problems of the SM; neutrino masses/mixings, dark matter, baryon asymmetry of the Universe, and the initial condition of the Universe (inflation). We comprehensively study the phenomenology of the dark matter when it is heavier than the e−e+ threshold, namely twice the electron mass, considering the threshold effect on the dark matter decay into e−e+. The viable parameter region is found only in the threshold region, while the branching fraction of the decay into e−e+ (i.e., the e−e+ signal) never vanishes even at the threshold due to the effect. As a result, the pure U(1)B−L extension without the kinetic mixing between the U(1)B−L and hypercharge gauge bosons have already been excluded by the present observation of the 511 keV photon from the galactic center. So, the Féeton dark matter requires a nonzero kinetic mixing to be a viable dark matter candidate and will be efficiently explored by future MeV-gamma ray telescopes thanks to the nonvanishing decay process into e−e+. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.