Molecular dynamics investigation of polyvinylidene difluoride dipole movement in electromechanical stretching: A key impact on the polymer’s piezoelectric phenomenon
Jinghua Lin, Mopa Gende, Yucun Zhan, Yanqi Zhao, Gaofeng Zheng, Artur Jaworski, Changcai Cui, Hui Cao
{"title":"Molecular dynamics investigation of polyvinylidene difluoride dipole movement in electromechanical stretching: A key impact on the polymer’s piezoelectric phenomenon","authors":"Jinghua Lin, Mopa Gende, Yucun Zhan, Yanqi Zhao, Gaofeng Zheng, Artur Jaworski, Changcai Cui, Hui Cao","doi":"10.1016/j.polymer.2025.128232","DOIUrl":null,"url":null,"abstract":"The transition from <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3B1;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 640.5 600.2\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B1\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">α</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">α</mi></math></script></span>-phase to <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3B2;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 573.5 1047.3\" width=\"1.332ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B2\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">β</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">β</mi></math></script></span>-phase is critical for the piezoelectric functionality of polyvinylidene difluoride (PVDF), with the dynamical behaviors of polymer molecular during this transition playing the key role in determining the piezoelectric performance. A molecular dynamics simulation was used to investigate the effects of the duration and direction of an applied electric field during external stretching on enhancing the <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3B2;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 573.5 1047.3\" width=\"1.332ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B2\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">β</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">β</mi></math></script></span>-phase content in PVDF. A simulation scheme, aligned with the electrospinning process, was designed, and phase transition simulations were conducted. The results show that mechanically stretched PVDF fibers form a disorder structure <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3B2;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 573.5 1047.3\" width=\"1.332ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B2\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">β</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">β</mi></math></script></span> phase lacking piezoelectric properties due to internal dipole cancellation. However, applying an electric field perpendicular to the stretching direction during stretching aids in dipole alignment, creating overall polarity. When an electric field with varying direction is applied during stretching, polymer’s polarity direction shifts rapidly, with the electric field strength playing a positive role in the process. The variation in electric field direction is crucial in differentiating the piezoelectric coefficients of near-field and far-field electrospun films. This work provides a theoretical foundation for optimizing nanofibrous fabrication processes for high-performance piezoelectric applications.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"60 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2025.128232","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The transition from -phase to -phase is critical for the piezoelectric functionality of polyvinylidene difluoride (PVDF), with the dynamical behaviors of polymer molecular during this transition playing the key role in determining the piezoelectric performance. A molecular dynamics simulation was used to investigate the effects of the duration and direction of an applied electric field during external stretching on enhancing the -phase content in PVDF. A simulation scheme, aligned with the electrospinning process, was designed, and phase transition simulations were conducted. The results show that mechanically stretched PVDF fibers form a disorder structure phase lacking piezoelectric properties due to internal dipole cancellation. However, applying an electric field perpendicular to the stretching direction during stretching aids in dipole alignment, creating overall polarity. When an electric field with varying direction is applied during stretching, polymer’s polarity direction shifts rapidly, with the electric field strength playing a positive role in the process. The variation in electric field direction is crucial in differentiating the piezoelectric coefficients of near-field and far-field electrospun films. This work provides a theoretical foundation for optimizing nanofibrous fabrication processes for high-performance piezoelectric applications.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.