Duo Zhang, Miao Zhou, Eslam Sheha, Jiulin Wang, Jun Yang, Yanna NuLi
{"title":"Anion-Regulated Solvation Structure and Electrode Interface toward Rechargeable Magnesium Batteries","authors":"Duo Zhang, Miao Zhou, Eslam Sheha, Jiulin Wang, Jun Yang, Yanna NuLi","doi":"10.1021/acs.nanolett.4c06433","DOIUrl":null,"url":null,"abstract":"Developing chlorine-free electrolytes enabling fast Mg<sup>2+</sup> transport through a solid/cathode-electrolyte interphase (SEI/CEI) remains critical for rechargeable magnesium batteries (RMBs). However, single-anion electrolytes often lack the necessary redox properties for this requirement. Here, we propose a dual-anion electrolyte combining magnesium bis(trifluoromethanesulfonyl)imide and 1-butyl-1-methylpiperidinium trifluoromethylsulfonate (PP<sub>14</sub>CF<sub>3</sub>SO<sub>3</sub>) in diglyme and 2-methoxyethylamine (MOEA) solvent, achieving efficient Mg plating/stripping, cathode compatibility, and high anodic stability. The electrostatic interactions between MOEA and Mg<sup>2+</sup>/CF<sub>3</sub>SO<sub>3</sub><sup>–</sup> stabilize the Mg-anode SEI while fostering C<sub><i>x</i></sub>N<sub><i>y</i></sub>-rich CEI formation. This leads to a significantly improved performance in Mg∥Mg and stainless steel (SS)∥Mg cells, with an extended lifespan over 2500 h and average Coulombic efficiency of 98.1%, respectively. Mo<sub>6</sub>S<sub>8</sub>∥Mg full cells exhibit excellent rate performance, while poly(6,6′,6″-(benzene-1,3,5-triyl)tris(9,10-anthracenedione)) (PBAQ)∥Mg cells operate at 2.8 V (1 A g<sup>–1</sup>) with ∼70% capacity retention after 200 cycles. The work highlights anion-mediated solvation regulation, providing insights into advanced electrolyte engineering in high-performance RMBs.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"51 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c06433","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing chlorine-free electrolytes enabling fast Mg2+ transport through a solid/cathode-electrolyte interphase (SEI/CEI) remains critical for rechargeable magnesium batteries (RMBs). However, single-anion electrolytes often lack the necessary redox properties for this requirement. Here, we propose a dual-anion electrolyte combining magnesium bis(trifluoromethanesulfonyl)imide and 1-butyl-1-methylpiperidinium trifluoromethylsulfonate (PP14CF3SO3) in diglyme and 2-methoxyethylamine (MOEA) solvent, achieving efficient Mg plating/stripping, cathode compatibility, and high anodic stability. The electrostatic interactions between MOEA and Mg2+/CF3SO3– stabilize the Mg-anode SEI while fostering CxNy-rich CEI formation. This leads to a significantly improved performance in Mg∥Mg and stainless steel (SS)∥Mg cells, with an extended lifespan over 2500 h and average Coulombic efficiency of 98.1%, respectively. Mo6S8∥Mg full cells exhibit excellent rate performance, while poly(6,6′,6″-(benzene-1,3,5-triyl)tris(9,10-anthracenedione)) (PBAQ)∥Mg cells operate at 2.8 V (1 A g–1) with ∼70% capacity retention after 200 cycles. The work highlights anion-mediated solvation regulation, providing insights into advanced electrolyte engineering in high-performance RMBs.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.