Electron Itinerancy Mediated by Oxygen Vacancies Breaks the Inert Electron Chain to Boosts Lithium-Oxygen Batteries Electrocatalysis

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-03-13 DOI:10.1002/anie.202501837
Yaning Fu, Chunmei Liu, Lina Song, Shaoze Zhao, Mengyao Huang, Zhongjun Li, Huabiao Tang, Youcai Lu, Jijing Xu, Qing-Chao Liu
{"title":"Electron Itinerancy Mediated by Oxygen Vacancies Breaks the Inert Electron Chain to Boosts Lithium-Oxygen Batteries Electrocatalysis","authors":"Yaning Fu, Chunmei Liu, Lina Song, Shaoze Zhao, Mengyao Huang, Zhongjun Li, Huabiao Tang, Youcai Lu, Jijing Xu, Qing-Chao Liu","doi":"10.1002/anie.202501837","DOIUrl":null,"url":null,"abstract":"The complex interaction between dopants and oxygen vacancies (Vo) in metal oxides is crucial for enhancing the adsorption and electron transfer processes of Li-O2 batteries. However, the synergetic mechanism among Vo, dopants, and the host matrix remains unclear. Herein, Ru single-atom-modified TiO2 nanorod (Ru1-TiO2-x) with abundant Vo were fabricated, serving as an efficient catalyst for Li-O2 batteries. Experimental and theoretical investigations have demonstrated that Vo as an \"electron pump\", facilitating electron itinerant behavior, while Ru1 serves as an \"electron buffer\" to further activate the [Ru-O-Ti] electronic chain, implements the Li-O2 batteries highly active and stable in the process of circulation two-way self-adjusting characteristics. Consequently, the Ru1-TiO2-x-based Li-O2 batteries exhibit an ultra-low charge polarization and stable performance. Vo and Ru1 synergistically coordinate their control over the d-band center at the Ti site to establish a flexible and tunable Ru-Ti dual active site. This adjustment effectively balances the binding strength with the interface oxygen intermediate (*O), thereby significantly reducing the activation barrier. The Hamiltonian layout further revealed the crucial role of remote orbital coupling in maintaining the structural stability. This study provides insights into Vo-dependent electron transfer kinetics and introduces new strategies for activating catalytically inert materials.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"87 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202501837","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The complex interaction between dopants and oxygen vacancies (Vo) in metal oxides is crucial for enhancing the adsorption and electron transfer processes of Li-O2 batteries. However, the synergetic mechanism among Vo, dopants, and the host matrix remains unclear. Herein, Ru single-atom-modified TiO2 nanorod (Ru1-TiO2-x) with abundant Vo were fabricated, serving as an efficient catalyst for Li-O2 batteries. Experimental and theoretical investigations have demonstrated that Vo as an "electron pump", facilitating electron itinerant behavior, while Ru1 serves as an "electron buffer" to further activate the [Ru-O-Ti] electronic chain, implements the Li-O2 batteries highly active and stable in the process of circulation two-way self-adjusting characteristics. Consequently, the Ru1-TiO2-x-based Li-O2 batteries exhibit an ultra-low charge polarization and stable performance. Vo and Ru1 synergistically coordinate their control over the d-band center at the Ti site to establish a flexible and tunable Ru-Ti dual active site. This adjustment effectively balances the binding strength with the interface oxygen intermediate (*O), thereby significantly reducing the activation barrier. The Hamiltonian layout further revealed the crucial role of remote orbital coupling in maintaining the structural stability. This study provides insights into Vo-dependent electron transfer kinetics and introduces new strategies for activating catalytically inert materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Electron Itinerancy Mediated by Oxygen Vacancies Breaks the Inert Electron Chain to Boosts Lithium-Oxygen Batteries Electrocatalysis Allenylidene Phosphonium Ion: An Isoelectronic Phosphorus Analogue of [3]Cumulene Base-Catalyzed Remote Hydrogermylation of Olefins A d-electron Deficient Pd Trimer for Exceptional Pyridine Hydrogenation Activity and Selectivity Suppressing Spontaneous Acidic Corrosion and Hydrogen Evolution for Stable Zn//MnO2 Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1