D. Byrska-Wójcik , M. Ostachowska , J. Gibek , K. Wierzbanowski , M. Wróbel , R. Błoniarz , A. Baczmański , M. Kopyściański , I. Kalemba-Rec
{"title":"Effects of asymmetric rolling with tilted material entry on texture and mechanical properties of aluminium","authors":"D. Byrska-Wójcik , M. Ostachowska , J. Gibek , K. Wierzbanowski , M. Wróbel , R. Błoniarz , A. Baczmański , M. Kopyściański , I. Kalemba-Rec","doi":"10.1016/j.jmatprotec.2025.118796","DOIUrl":null,"url":null,"abstract":"<div><div>This research focuses on optimizing rolling geometry to achieve a uniform texture throughout the thickness of aluminium alloy 1050 plates. Traditional symmetric rolling techniques often lead to non-homogeneous textures; therefore, the study explores asymmetric rolling and its variations as potential solutions. In this investigation, asymmetric rolling was implemented by using rolls of differing diameters that rotate at the same angular velocity, along with adjusting the inclination of the rolled strip, either flat or tilted, as it enters the rolls. A thickness reduction of 84 % was achieved over six rolling passes. The resulting crystallographic texture variations within the rolled material were analysed through X-ray diffraction and predicted using the Finite Element Method (FEM) in conjunction with two crystalline deformation models. The findings reveal that the texture modifications induced by the shear strain and stress components during asymmetric rolling lead to shifts in selected texture maxima in the orientation space. These variations in texture distribution across the material's thickness have a direct impact on its mechanical properties, which were assessed through tensile testing. A key contribution of this work is its examination of how the angle of material entry influences texture homogenization during multi-pass asymmetric rolling, as well as its effect on the mechanical characteristics of the final product. The study concludes by identifying the most effective rolling configurations, providing practical recommendations for industrial applications.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"338 ","pages":"Article 118796"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092401362500086X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
This research focuses on optimizing rolling geometry to achieve a uniform texture throughout the thickness of aluminium alloy 1050 plates. Traditional symmetric rolling techniques often lead to non-homogeneous textures; therefore, the study explores asymmetric rolling and its variations as potential solutions. In this investigation, asymmetric rolling was implemented by using rolls of differing diameters that rotate at the same angular velocity, along with adjusting the inclination of the rolled strip, either flat or tilted, as it enters the rolls. A thickness reduction of 84 % was achieved over six rolling passes. The resulting crystallographic texture variations within the rolled material were analysed through X-ray diffraction and predicted using the Finite Element Method (FEM) in conjunction with two crystalline deformation models. The findings reveal that the texture modifications induced by the shear strain and stress components during asymmetric rolling lead to shifts in selected texture maxima in the orientation space. These variations in texture distribution across the material's thickness have a direct impact on its mechanical properties, which were assessed through tensile testing. A key contribution of this work is its examination of how the angle of material entry influences texture homogenization during multi-pass asymmetric rolling, as well as its effect on the mechanical characteristics of the final product. The study concludes by identifying the most effective rolling configurations, providing practical recommendations for industrial applications.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.