Natural convection of power law fluid in square cavity equipped with heat-generating solid and submitted to two modes of time-periodic cooling: MRT-LBM simulation
A. Bourada , Y.K. Benkahla , A. Boutra , D.E. Ameziani
{"title":"Natural convection of power law fluid in square cavity equipped with heat-generating solid and submitted to two modes of time-periodic cooling: MRT-LBM simulation","authors":"A. Bourada , Y.K. Benkahla , A. Boutra , D.E. Ameziani","doi":"10.1016/j.jtice.2025.106067","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>This contribution deals with the numerical analysis of transient natural convection of power law fluid, filling a square cavity, in the presence of volumetric heat generation provided by a circular heat conductor solid, placed in the centre of the cavity. The cavity experiences two modes of time-periodic cooling: sinusoidal and triangular.</div></div><div><h3>Methods</h3><div>The numerical simulation is conducted using the multiple-relaxation-time lattice Boltzmann method and the boundary conditions at the circular obstacle are treated by coupling the spatial quadratic interpolation to the bounce back condition. The parametric study involves the effect of amplitude (0 ≤ A ≤ 2) and period (0.001 ≤ τ<sub>p</sub> ≤ 1) of the time-periodic temperature, oscillation mode (sinusoidal and triangular), Rayleigh number (10<sup>3</sup> ≤ Ra ≤ 10<sup>6</sup>), temperature-difference ratio (0 ≤ ΔT* ≤ 40) and power law index (0.7 ≤ n ≤ 1.3).</div></div><div><h3>Significant findings</h3><div>The results obtained show, on the one hand, that these parameters have a considerable effect on the fluid flow and heat transfer. Furthermore, it is noted that the choice of the cooling mode has an important role in the optimization of heat transfer. On the other hand, The MRT-LBM approach has been validated as effective for addressing such physical problems.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"171 ","pages":"Article 106067"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107025001208","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
This contribution deals with the numerical analysis of transient natural convection of power law fluid, filling a square cavity, in the presence of volumetric heat generation provided by a circular heat conductor solid, placed in the centre of the cavity. The cavity experiences two modes of time-periodic cooling: sinusoidal and triangular.
Methods
The numerical simulation is conducted using the multiple-relaxation-time lattice Boltzmann method and the boundary conditions at the circular obstacle are treated by coupling the spatial quadratic interpolation to the bounce back condition. The parametric study involves the effect of amplitude (0 ≤ A ≤ 2) and period (0.001 ≤ τp ≤ 1) of the time-periodic temperature, oscillation mode (sinusoidal and triangular), Rayleigh number (103 ≤ Ra ≤ 106), temperature-difference ratio (0 ≤ ΔT* ≤ 40) and power law index (0.7 ≤ n ≤ 1.3).
Significant findings
The results obtained show, on the one hand, that these parameters have a considerable effect on the fluid flow and heat transfer. Furthermore, it is noted that the choice of the cooling mode has an important role in the optimization of heat transfer. On the other hand, The MRT-LBM approach has been validated as effective for addressing such physical problems.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.