Comparison of radiation dose and image quality for abdominal CT exams using photon-counting and energy-integrating CT: A self-controlled study including optimized patient positioning
{"title":"Comparison of radiation dose and image quality for abdominal CT exams using photon-counting and energy-integrating CT: A self-controlled study including optimized patient positioning","authors":"L. Sukupova","doi":"10.1016/j.radi.2025.102909","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Photon-counting detector (PCD) CT represents a major advancement in CT imaging, offering improved image quality and reduced radiation dose compared to traditional energy-integrating detector (EID) CT. This study compared image quality and radiation dose using a self-controlled approach, while evaluating the impact of patient positioning.</div></div><div><h3>Methods</h3><div>This retrospective study analyzed data from 200 patients who underwent abdominal CT scans on both EID (Somatom Definition Flash) and PCD (Naeotom Alpha) scanners. After applying inclusion criteria for proper positioning (within ±20 mm) and stable anatomical conditions, 119 patients were included. Radiation doses were assessed using CTDI<sub>vol</sub>, and image quality was evaluated via CT numbers, noise levels, signal-to-noise ratio (SNR), SNR to dose (SNRD), and contrast-to-noise ratio to dose (CNRD).</div></div><div><h3>Results</h3><div>The study found a median radiation dose reduction of 37 % with PCD CT compared to EID CT (p < 0.05). Image quality assessments revealed significant improvements with PCD CT, including reduced noise levels (up to 31 % in contrast-enhanced organs) and enhanced SNRD (33–51 % increase). CNRD improved by 60–76 %, indicating superior imaging performance of PCD CT. However, 36 % of patients on EID were positioned outside the ±20 mm range, which could adversely affect image quality and radiation dose, underscoring the need for more precise patient positioning.</div></div><div><h3>Conclusion</h3><div>This study confirms that PCD CT achieves substantial reductions in radiation dose while enhancing image quality. However, accurate patient positioning is crucial to fully optimize these benefits. Automated tools that ensure proper positioning may be necessary to consistently maintain image quality and reduce radiation exposure.</div></div><div><h3>Implications for practice</h3><div>PCD CT offers improved patient safety and diagnostic imaging. Automated positioning tools are essential to optimize and consistently maintain image quality and minimize radiation exposure.</div></div>","PeriodicalId":47416,"journal":{"name":"Radiography","volume":"31 3","pages":"Article 102909"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiography","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1078817425000501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Photon-counting detector (PCD) CT represents a major advancement in CT imaging, offering improved image quality and reduced radiation dose compared to traditional energy-integrating detector (EID) CT. This study compared image quality and radiation dose using a self-controlled approach, while evaluating the impact of patient positioning.
Methods
This retrospective study analyzed data from 200 patients who underwent abdominal CT scans on both EID (Somatom Definition Flash) and PCD (Naeotom Alpha) scanners. After applying inclusion criteria for proper positioning (within ±20 mm) and stable anatomical conditions, 119 patients were included. Radiation doses were assessed using CTDIvol, and image quality was evaluated via CT numbers, noise levels, signal-to-noise ratio (SNR), SNR to dose (SNRD), and contrast-to-noise ratio to dose (CNRD).
Results
The study found a median radiation dose reduction of 37 % with PCD CT compared to EID CT (p < 0.05). Image quality assessments revealed significant improvements with PCD CT, including reduced noise levels (up to 31 % in contrast-enhanced organs) and enhanced SNRD (33–51 % increase). CNRD improved by 60–76 %, indicating superior imaging performance of PCD CT. However, 36 % of patients on EID were positioned outside the ±20 mm range, which could adversely affect image quality and radiation dose, underscoring the need for more precise patient positioning.
Conclusion
This study confirms that PCD CT achieves substantial reductions in radiation dose while enhancing image quality. However, accurate patient positioning is crucial to fully optimize these benefits. Automated tools that ensure proper positioning may be necessary to consistently maintain image quality and reduce radiation exposure.
Implications for practice
PCD CT offers improved patient safety and diagnostic imaging. Automated positioning tools are essential to optimize and consistently maintain image quality and minimize radiation exposure.
RadiographyRADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.70
自引率
34.60%
发文量
169
审稿时长
63 days
期刊介绍:
Radiography is an International, English language, peer-reviewed journal of diagnostic imaging and radiation therapy. Radiography is the official professional journal of the College of Radiographers and is published quarterly. Radiography aims to publish the highest quality material, both clinical and scientific, on all aspects of diagnostic imaging and radiation therapy and oncology.