Effect of the overexpression of the GGP1 gene on cell wall remodelling and redox state in the tomato fruit

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Science Pub Date : 2025-03-10 DOI:10.1016/j.plantsci.2025.112470
Nataliia Kutyrieva-Nowak , Ana Pantelić , Stefan Isaković , Angelos K. Kanellis , Marija Vidović , Agata Leszczuk
{"title":"Effect of the overexpression of the GGP1 gene on cell wall remodelling and redox state in the tomato fruit","authors":"Nataliia Kutyrieva-Nowak ,&nbsp;Ana Pantelić ,&nbsp;Stefan Isaković ,&nbsp;Angelos K. Kanellis ,&nbsp;Marija Vidović ,&nbsp;Agata Leszczuk","doi":"10.1016/j.plantsci.2025.112470","DOIUrl":null,"url":null,"abstract":"<div><div>Tomato fruit ripening is a complex physiological process that involves morphological, anatomical, biochemical, and molecular alterations. One of these changes occurring during ripening is the softening of the fruit, which is attributed to modifications in the biosynthesis and degradation of individual cell wall components, i.e. polysaccharides and proteoglycans. In addition, ripening is affected by redox processes, and interplay of the reactive oxygen species (ROS) and specific antioxidants, enzymes, ascorbate, and phenolic compounds. The present study aims to determine the impact of the overexpression of the <em>GDP-<span>l</span>-galactose phosphorylase</em> (<em>GGP1</em>) gene under the control of two fruit-specific promoters, namely <em>PPC</em> - <em>phosphoenolpyruvate carboxylase</em> and <em>PG - polygalacturonase</em> on cell wall properties, activities of H<sub>2</sub>O<sub>2</sub>-regulating enzymes and the abundance of phenolic compounds. <em>PPC-GGP1</em> and <em>PG-GGP1</em> transgenic lines revealed significant structural changes in fruit parenchyma, compared to wild type fruit, followed by a disturbance in the spatial distribution and molecular &amp; chemical composition of homogalacturonans. In addition, cell wall-bound monolignol, <em>p</em>-coumaryl alcohol was higher in transgenic fruit compared with wild type ones. Lastly, the catalase and ascorbate peroxidase activities were lower in <em>PPC-GGP1</em> fruits, indicating changes in the regulation of antioxidative defense during the ripening process of this line. These results suggest that overexpression of the <em>GGP1</em> gene affects the cell wall remodelling and redox state in the red ripe tomato fruits.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"355 ","pages":"Article 112470"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945225000883","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tomato fruit ripening is a complex physiological process that involves morphological, anatomical, biochemical, and molecular alterations. One of these changes occurring during ripening is the softening of the fruit, which is attributed to modifications in the biosynthesis and degradation of individual cell wall components, i.e. polysaccharides and proteoglycans. In addition, ripening is affected by redox processes, and interplay of the reactive oxygen species (ROS) and specific antioxidants, enzymes, ascorbate, and phenolic compounds. The present study aims to determine the impact of the overexpression of the GDP-l-galactose phosphorylase (GGP1) gene under the control of two fruit-specific promoters, namely PPC - phosphoenolpyruvate carboxylase and PG - polygalacturonase on cell wall properties, activities of H2O2-regulating enzymes and the abundance of phenolic compounds. PPC-GGP1 and PG-GGP1 transgenic lines revealed significant structural changes in fruit parenchyma, compared to wild type fruit, followed by a disturbance in the spatial distribution and molecular & chemical composition of homogalacturonans. In addition, cell wall-bound monolignol, p-coumaryl alcohol was higher in transgenic fruit compared with wild type ones. Lastly, the catalase and ascorbate peroxidase activities were lower in PPC-GGP1 fruits, indicating changes in the regulation of antioxidative defense during the ripening process of this line. These results suggest that overexpression of the GGP1 gene affects the cell wall remodelling and redox state in the red ripe tomato fruits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Science
Plant Science 生物-生化与分子生物学
CiteScore
9.10
自引率
1.90%
发文量
322
审稿时长
33 days
期刊介绍: Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment. Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.
期刊最新文献
The vacuole pH-related gene RcNHX2 affects flower color shift and Na+ homeostasis in roses. GhCTEF2 encodes a PLS-type PPR protein required for chloroplast development and plastid RNA editing in cotton. Nitric oxide production and protein S-nitrosation in algae. Analysis of the SlRAF-like B gene family in tomato and the molecular mechanism of SlRAF7 in regulating cold stress resistance. Role of jasmonates in plant response to temperature stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1