Resource allocation method for reliable transmission of requests based on shared backup path protection and fragmentation-aware in elastic optical networks
Huanlin Liu , Xingji Huo , Yong Chen , Bo Liu , Runze Ge , Di Deng , Haonan Chen
{"title":"Resource allocation method for reliable transmission of requests based on shared backup path protection and fragmentation-aware in elastic optical networks","authors":"Huanlin Liu , Xingji Huo , Yong Chen , Bo Liu , Runze Ge , Di Deng , Haonan Chen","doi":"10.1016/j.osn.2025.100802","DOIUrl":null,"url":null,"abstract":"<div><div>Elastic optical networks can effectively adapt to complex and dynamic network conditions, improving spectrum resource utilization. However, if the link fails, it will cause significant data loss or interruption to the network operator. Therefore, we propose a reliable routing, modulation, and spectrum allocation (SBPP-FA-RRMSA) algorithm based on shared backup path protection (SBPP) and fragmentation-aware to guarantee reliable transmission of requests and solve spectrum fragmentation problem. In order to save resources, we adopt the SBPP method, we design the reliability of requests based on path failure probability, and also design a path cost function combined with the path resources to select the transmission path. Then, we propose a dynamic spectrum partitioning method to guarantee non-interference of the working resources and the backup resources. Finally, in terms of resource allocation, we design a path fragmentation ratio to allocate working resources, and a spectrum fitness function to allocate backup resources. Simulation results show that under the premise of considering link failures, the proposed SBPP-FA-RRMSA has lower bandwidth blocking probability and fragmentation ratio compared with the algorithms that do not consider the probability of failures, fragmentation, and shared backup path protection, and it also makes full use of the sharing of backup resources.</div></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"57 ","pages":"Article 100802"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427725000098","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Elastic optical networks can effectively adapt to complex and dynamic network conditions, improving spectrum resource utilization. However, if the link fails, it will cause significant data loss or interruption to the network operator. Therefore, we propose a reliable routing, modulation, and spectrum allocation (SBPP-FA-RRMSA) algorithm based on shared backup path protection (SBPP) and fragmentation-aware to guarantee reliable transmission of requests and solve spectrum fragmentation problem. In order to save resources, we adopt the SBPP method, we design the reliability of requests based on path failure probability, and also design a path cost function combined with the path resources to select the transmission path. Then, we propose a dynamic spectrum partitioning method to guarantee non-interference of the working resources and the backup resources. Finally, in terms of resource allocation, we design a path fragmentation ratio to allocate working resources, and a spectrum fitness function to allocate backup resources. Simulation results show that under the premise of considering link failures, the proposed SBPP-FA-RRMSA has lower bandwidth blocking probability and fragmentation ratio compared with the algorithms that do not consider the probability of failures, fragmentation, and shared backup path protection, and it also makes full use of the sharing of backup resources.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks