Analysis of short- and long-term coupled THM behaviours in argillaceous rock for nuclear waste disposal

IF 3.3 2区 工程技术 Q3 ENERGY & FUELS Geomechanics for Energy and the Environment Pub Date : 2025-03-07 DOI:10.1016/j.gete.2025.100660
Fei Song , Antonio Gens , Stefano Collico , Carlos Plúa , Gilles Armand , Huaning Wang
{"title":"Analysis of short- and long-term coupled THM behaviours in argillaceous rock for nuclear waste disposal","authors":"Fei Song ,&nbsp;Antonio Gens ,&nbsp;Stefano Collico ,&nbsp;Carlos Plúa ,&nbsp;Gilles Armand ,&nbsp;Huaning Wang","doi":"10.1016/j.gete.2025.100660","DOIUrl":null,"url":null,"abstract":"<div><div>Deep geological disposal is recognised as the most feasible method for the management of High-level Nuclear Waste (HLW). This study involved the performance of numerical analyses to evaluate the short- and long-term Thermo-Hydro-Mechanical (THM) behaviour of HLW disposals at the repository scale. A far-field numerical model is analysed, considering geological profiles 1000 m deep from the surface. In the analyses, an elasto-viscoplastic constitutive model is employed to characterize the behaviour of the argillaceous host rock, taking into account hardening-softening behaviour, anisotropy of THM properties, as well as permeability variation due to damage. Generalized Darcy’s law and Fourier’s law are utilized to represent the liquid and heat fluxes, respectively. Wide-ranging parametric analyses are performed to investigate the effect of spacing between parallel microtunnels and of different multi-physics interactions on the evolution of THM behaviour at the repository scale. Variations in spacing significantly impact the temperature and pore pressure fields, which in turn influence the development of potential damage zones. An enhanced understanding of the THM mechanisms associated with the short-term and long-term stability of nuclear waste disposals has been achieved in this study, therefore, providing valuable insights for the design and optimization of the geological repositories.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"42 ","pages":"Article 100660"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825000255","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep geological disposal is recognised as the most feasible method for the management of High-level Nuclear Waste (HLW). This study involved the performance of numerical analyses to evaluate the short- and long-term Thermo-Hydro-Mechanical (THM) behaviour of HLW disposals at the repository scale. A far-field numerical model is analysed, considering geological profiles 1000 m deep from the surface. In the analyses, an elasto-viscoplastic constitutive model is employed to characterize the behaviour of the argillaceous host rock, taking into account hardening-softening behaviour, anisotropy of THM properties, as well as permeability variation due to damage. Generalized Darcy’s law and Fourier’s law are utilized to represent the liquid and heat fluxes, respectively. Wide-ranging parametric analyses are performed to investigate the effect of spacing between parallel microtunnels and of different multi-physics interactions on the evolution of THM behaviour at the repository scale. Variations in spacing significantly impact the temperature and pore pressure fields, which in turn influence the development of potential damage zones. An enhanced understanding of the THM mechanisms associated with the short-term and long-term stability of nuclear waste disposals has been achieved in this study, therefore, providing valuable insights for the design and optimization of the geological repositories.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geomechanics for Energy and the Environment
Geomechanics for Energy and the Environment Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
11.80%
发文量
87
期刊介绍: The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources. The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.
期刊最新文献
Study on novel alkali-activated cementitious grout for scour control of offshore foundation Designing a repository in domal salt: The influence of design variants in different modelling environments Settlement analysis in the context of underground climate change Experimental study of evaporation from soil-atmosphere interfaces Impact of flow direction and soil characteristics on suffusion susceptibility: Analyzing soil resistance and filtration effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1