{"title":"Can large language models effectively reason about adverse weather conditions?","authors":"Nima Zafarmomen , Vidya Samadi","doi":"10.1016/j.envsoft.2025.106421","DOIUrl":null,"url":null,"abstract":"<div><div>This paper seeks to answer the question “can Large Language Models (LLMs) effectively reason about adverse weather conditions?”. To address this question, we utilized multiple LLMs to harness the US National Weather Service (NWS) flood report data spanning from June 2005 to September 2024. Bidirectional and Auto-Regressive Transformer (BART), Bidirectional Encoder Representations from Transformers (BERT), Large Language Model Meta AI (LLaMA-2), LLaMA-3, and LLaMA-3.1 were employed to categorize data based on predefined labels. The methodology was implemented in Charleston County, South Carolina, USA. Extreme events were unevenly distributed across the training period with the “Cyclonic” category exhibiting significantly fewer instances compared to the “Flood” and “Thunderstorm” categories. Analysis suggests that the LLaMA-3 reached its peak performance at 60% of the dataset size while other LLMs achieved peak performance at approximately 80–100% of the dataset size. This study provided deep insights into the application of LLMs in reasoning adverse weather conditions.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"188 ","pages":"Article 106421"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225001057","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper seeks to answer the question “can Large Language Models (LLMs) effectively reason about adverse weather conditions?”. To address this question, we utilized multiple LLMs to harness the US National Weather Service (NWS) flood report data spanning from June 2005 to September 2024. Bidirectional and Auto-Regressive Transformer (BART), Bidirectional Encoder Representations from Transformers (BERT), Large Language Model Meta AI (LLaMA-2), LLaMA-3, and LLaMA-3.1 were employed to categorize data based on predefined labels. The methodology was implemented in Charleston County, South Carolina, USA. Extreme events were unevenly distributed across the training period with the “Cyclonic” category exhibiting significantly fewer instances compared to the “Flood” and “Thunderstorm” categories. Analysis suggests that the LLaMA-3 reached its peak performance at 60% of the dataset size while other LLMs achieved peak performance at approximately 80–100% of the dataset size. This study provided deep insights into the application of LLMs in reasoning adverse weather conditions.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.