Ding-chen ZHA , Jia-heng WANG , Rui-xiang Hao , Yun-feng Wu , Xiu-he LI , Jia-wen ZHAO , Wen LI , Wen-xiang PIAO , Nan-zhe JIANG
{"title":"Recent progress on the use of lignin-based porous carbon in supercapacitors","authors":"Ding-chen ZHA , Jia-heng WANG , Rui-xiang Hao , Yun-feng Wu , Xiu-he LI , Jia-wen ZHAO , Wen LI , Wen-xiang PIAO , Nan-zhe JIANG","doi":"10.1016/S1872-5805(25)60955-3","DOIUrl":null,"url":null,"abstract":"<div><div>With the development of electronics and portable devices, there is a significant drive to develop electrode materials for supercapacitors that are lightweight, economical, and provide high energy and power densities. Lignin-based porous carbons have recently been extensively studied for energy storage applications because of their characteristics of large specific surface area, easy doping, and high conductivity. Significant progress in the synthesis of porous carbons derived from lignin, using different strategies for their preparation and modification with heteroatoms, metal oxides, metal sulfides, and conductive polymers is considered and their electrochemical performances and ion storage mechanisms are discussed. Considerable focus is directed towards the challenges encountered in using lignin-based porous carbons and the ways to optimize specific capacity and energy density for supercapacitor applications. Finally, the limitations of existing technologies and research directions for improving the performance of lignin-based carbons are discussed.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (109KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 1","pages":"Pages 50-80"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609553","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of electronics and portable devices, there is a significant drive to develop electrode materials for supercapacitors that are lightweight, economical, and provide high energy and power densities. Lignin-based porous carbons have recently been extensively studied for energy storage applications because of their characteristics of large specific surface area, easy doping, and high conductivity. Significant progress in the synthesis of porous carbons derived from lignin, using different strategies for their preparation and modification with heteroatoms, metal oxides, metal sulfides, and conductive polymers is considered and their electrochemical performances and ion storage mechanisms are discussed. Considerable focus is directed towards the challenges encountered in using lignin-based porous carbons and the ways to optimize specific capacity and energy density for supercapacitor applications. Finally, the limitations of existing technologies and research directions for improving the performance of lignin-based carbons are discussed.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.