Soil disturbance induced by urban shield tunnelling in sandy pebble soil considering non-coaxiality and anisotropy

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Tunnelling and Underground Space Technology Pub Date : 2025-03-13 DOI:10.1016/j.tust.2025.106573
Jian Cui , Zhigang Yao , Tao Yu , Kaichen Ying , Yong Fang , Wanghao Xu , Yufang Zhang , Jian Li , Bo Liu
{"title":"Soil disturbance induced by urban shield tunnelling in sandy pebble soil considering non-coaxiality and anisotropy","authors":"Jian Cui ,&nbsp;Zhigang Yao ,&nbsp;Tao Yu ,&nbsp;Kaichen Ying ,&nbsp;Yong Fang ,&nbsp;Wanghao Xu ,&nbsp;Yufang Zhang ,&nbsp;Jian Li ,&nbsp;Bo Liu","doi":"10.1016/j.tust.2025.106573","DOIUrl":null,"url":null,"abstract":"<div><div>Shield tunnelling through densely populated urban areas inevitably disturbs the surrounding soil, potentially posing significant safety risks to nearby buildings and structures. The constitutive models currently employed in numerical simulations for tunnel engineering are predominantly confined to the assumptions of isotropy and coaxiality, making it challenging to adequately capture the complexity of the mechanical response of the soil surrounding the tunnel. Based on the proposed non-coaxial and anisotropic elastoplastic Mohr-Coulomb yield criterion, this study carries out numerical simulation analyses of soil disturbance induced by urban shield tunnelling. Herein, the anisotropic parameters <em>n</em> and <em>β</em> jointly determine the shape of the anisotropic yield surface. The results demonstrate that rotation of the principal stress axes is observed in most areas of the soil surrounding the tunnel face, with the phenomenon being particularly pronounced at the crown and the invert of the tunnel. As the anisotropic parameter <em>n</em> decreases, the maximum surface settlement above the tunnel axis increases. The influence of anisotropy on higher-stress unloading coefficients is significant, resulting in the development of a wider plastic zone around the tunnel. As the coefficient of lateral earth pressure at rest <em>K</em><sub>0</sub> increases, the maximum surface settlement gradually reduces. Under the influence of anisotropic parameter <em>β</em> or non-coaxial parameter <em>k</em>, the maximum surface settlement exhibits an approximately linear relationship with <em>K</em><sub>0</sub>. However, the anisotropic parameter <em>n</em> has a significant influence on the trend of the maximum surface settlement with respect to <em>K</em><sub>0</sub>, which leads to a non-linear relationship. Neglecting the effects of soil anisotropy, non-coaxiality, and the coefficient of lateral earth pressure at rest may lead to design schemes that are potentially unsafe. The results of this research can provide engineers with design bases for construction parameters and soil disturbance control while shield tunnelling in sandy pebble soil.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"161 ","pages":"Article 106573"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779825002111","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Shield tunnelling through densely populated urban areas inevitably disturbs the surrounding soil, potentially posing significant safety risks to nearby buildings and structures. The constitutive models currently employed in numerical simulations for tunnel engineering are predominantly confined to the assumptions of isotropy and coaxiality, making it challenging to adequately capture the complexity of the mechanical response of the soil surrounding the tunnel. Based on the proposed non-coaxial and anisotropic elastoplastic Mohr-Coulomb yield criterion, this study carries out numerical simulation analyses of soil disturbance induced by urban shield tunnelling. Herein, the anisotropic parameters n and β jointly determine the shape of the anisotropic yield surface. The results demonstrate that rotation of the principal stress axes is observed in most areas of the soil surrounding the tunnel face, with the phenomenon being particularly pronounced at the crown and the invert of the tunnel. As the anisotropic parameter n decreases, the maximum surface settlement above the tunnel axis increases. The influence of anisotropy on higher-stress unloading coefficients is significant, resulting in the development of a wider plastic zone around the tunnel. As the coefficient of lateral earth pressure at rest K0 increases, the maximum surface settlement gradually reduces. Under the influence of anisotropic parameter β or non-coaxial parameter k, the maximum surface settlement exhibits an approximately linear relationship with K0. However, the anisotropic parameter n has a significant influence on the trend of the maximum surface settlement with respect to K0, which leads to a non-linear relationship. Neglecting the effects of soil anisotropy, non-coaxiality, and the coefficient of lateral earth pressure at rest may lead to design schemes that are potentially unsafe. The results of this research can provide engineers with design bases for construction parameters and soil disturbance control while shield tunnelling in sandy pebble soil.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
期刊最新文献
Shaking table and pushover tests on subway station improved by truncated columns Experimental and numerical research of hydrogen-blended natural gas leakage and diffusion in utility tunnels Multi-parameter determination method for rock discontinuity roughness based on geometric properties intelligent extraction Analysis of longitudinal deformation of existing rectangular pipe jacking tunnel caused by shield tunnel undercrossing The experimental study on the flame extension length and maximum temperature of ceiling jet flame in the curved tunnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1