Xiangxi Li , Mengze Li , Fengyi Zhang , Fanrui Kong , Di Yang , Weiwei Qu , Yinglin Ke
{"title":"A novel method for constructing 3D void RVE elements and rapid homogenization of composite materials","authors":"Xiangxi Li , Mengze Li , Fengyi Zhang , Fanrui Kong , Di Yang , Weiwei Qu , Yinglin Ke","doi":"10.1016/j.compstruct.2025.119040","DOIUrl":null,"url":null,"abstract":"<div><div>This article provides a method for modeling large-scale three-dimensional (3D) void defect Representative Volume Elements (RVE) with high fiber volume fractions and performing rapid homogenization. A 3D multi-section void construction method based on the Ferguson curve is proposed, along with an “inertia algorithm” that obtains optimal fiber positioning by minimizing overall inertia, taking the influence of void positioning into account. This method enables the rapid generation of 3D void defect RVE models with high fiber volume fractions. A model simplification and rapid homogenization method based on a multi-scale approach is proposed, in which the RVE containing void defects is treated as a mesoscopic structure with fiber-resin and void regions considered as two microcosmic structures. The fiber-resin region is regarded as a new material, simplifying the initial fiber-resin-void three-phase model into a two-phase model of the new material and voids. The simplified model has only 9.2% of the initial mesh elements and a homogenization time of 6.7%, achieving rapid homogenization. The rapid homogenization method was validated using two existing void RVE models, revealing an accuracy of over 95% for the obtained elastic constants.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"360 ","pages":"Article 119040"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325002053","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This article provides a method for modeling large-scale three-dimensional (3D) void defect Representative Volume Elements (RVE) with high fiber volume fractions and performing rapid homogenization. A 3D multi-section void construction method based on the Ferguson curve is proposed, along with an “inertia algorithm” that obtains optimal fiber positioning by minimizing overall inertia, taking the influence of void positioning into account. This method enables the rapid generation of 3D void defect RVE models with high fiber volume fractions. A model simplification and rapid homogenization method based on a multi-scale approach is proposed, in which the RVE containing void defects is treated as a mesoscopic structure with fiber-resin and void regions considered as two microcosmic structures. The fiber-resin region is regarded as a new material, simplifying the initial fiber-resin-void three-phase model into a two-phase model of the new material and voids. The simplified model has only 9.2% of the initial mesh elements and a homogenization time of 6.7%, achieving rapid homogenization. The rapid homogenization method was validated using two existing void RVE models, revealing an accuracy of over 95% for the obtained elastic constants.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.