John Atanbori , Christos A. Frantzidis , Mohammed Al-Khafajiy , Aliyu Aliyu , Behnaz Sohani , Kofi Appiah , Harriet Moore , Catherine Sanders , Alastair I. Ward
{"title":"Learning with noisy labels for classifying biological echoes in polarimetric weather radar observations using artificial neural networks","authors":"John Atanbori , Christos A. Frantzidis , Mohammed Al-Khafajiy , Aliyu Aliyu , Behnaz Sohani , Kofi Appiah , Harriet Moore , Catherine Sanders , Alastair I. Ward","doi":"10.1016/j.neucom.2025.129892","DOIUrl":null,"url":null,"abstract":"<div><div>The identification of biological echoes in radar data has revolutionized research into airborne migratory species. Deep learning applied to polarimetric weather radar observations can reveal signature patterns of mass movement by bio-scatterers such as birds, bats, and insects. However, due to the difficulties in labelling bio-scatterers in these data, threshold approaches have been proposed in the literature. In this research, we used the depolarization ratio (DR) based on differential reflectivity (zDR) and the cross-correlation coefficient (pHV), along with citizen scientist-reported data, to label bio-scatterers for deep learning. This method of labelling biological echoes in radar signatures is prone to noise, which impacts the accuracy of any model that relies on it. We introduce a novel semi-supervised co-training approach that uses a bootstrap ensemble with a confidence threshold. Our ensemble consists of the newly proposed STNet and two modified FNet models, which incorporate co-learning through bootstrap sampling for label correction. This innovative method significantly improves classification accuracy across all three multivariate numerical datasets compared to baseline models that lack co-learning with bootstrap-based label correction.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"634 ","pages":"Article 129892"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225005648","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The identification of biological echoes in radar data has revolutionized research into airborne migratory species. Deep learning applied to polarimetric weather radar observations can reveal signature patterns of mass movement by bio-scatterers such as birds, bats, and insects. However, due to the difficulties in labelling bio-scatterers in these data, threshold approaches have been proposed in the literature. In this research, we used the depolarization ratio (DR) based on differential reflectivity (zDR) and the cross-correlation coefficient (pHV), along with citizen scientist-reported data, to label bio-scatterers for deep learning. This method of labelling biological echoes in radar signatures is prone to noise, which impacts the accuracy of any model that relies on it. We introduce a novel semi-supervised co-training approach that uses a bootstrap ensemble with a confidence threshold. Our ensemble consists of the newly proposed STNet and two modified FNet models, which incorporate co-learning through bootstrap sampling for label correction. This innovative method significantly improves classification accuracy across all three multivariate numerical datasets compared to baseline models that lack co-learning with bootstrap-based label correction.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.