Compatible finite element interpolated neural networks

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2025-03-13 DOI:10.1016/j.cma.2025.117889
Santiago Badia , Wei Li , Alberto F. Martín
{"title":"Compatible finite element interpolated neural networks","authors":"Santiago Badia ,&nbsp;Wei Li ,&nbsp;Alberto F. Martín","doi":"10.1016/j.cma.2025.117889","DOIUrl":null,"url":null,"abstract":"<div><div>We extend the finite element interpolated neural network (FEINN) framework from partial differential equations (PDEs) with weak solutions in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> to PDEs with weak solutions in <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>curl</mi><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>div</mi><mo>)</mo></mrow></mrow></math></span>. To this end, we consider interpolation trial spaces that satisfy the de Rham Hilbert subcomplex, providing stable and structure-preserving neural network discretisations for a wide variety of PDEs. This approach, coined compatible FEINNs, has been used to accurately approximate the <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>curl</mi><mo>)</mo></mrow></mrow></math></span> inner product. We numerically observe that the trained network outperforms finite element solutions by several orders of magnitude for smooth analytical solutions. Furthermore, to showcase the versatility of the method, we demonstrate that compatible FEINNs achieve high accuracy in solving surface PDEs such as the Darcy equation on a sphere. Additionally, the framework can integrate adaptive mesh refinements to effectively solve problems with localised features. We use an adaptive training strategy to train the network on a sequence of progressively adapted meshes. Finally, we compare compatible FEINNs with the adjoint neural network method for solving inverse problems. We consider a one-loop algorithm that trains the neural networks for unknowns and missing parameters using a loss function that includes PDE residual and data misfit terms. The algorithm is applied to identify space-varying physical parameters for the <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>curl</mi><mo>)</mo></mrow></mrow></math></span> model problem from partial, noisy, or boundary observations. We find that compatible FEINNs achieve accuracy and robustness comparable to, if not exceeding, the adjoint method in these scenarios.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"439 ","pages":"Article 117889"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525001616","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We extend the finite element interpolated neural network (FEINN) framework from partial differential equations (PDEs) with weak solutions in H1 to PDEs with weak solutions in H(curl) or H(div). To this end, we consider interpolation trial spaces that satisfy the de Rham Hilbert subcomplex, providing stable and structure-preserving neural network discretisations for a wide variety of PDEs. This approach, coined compatible FEINNs, has been used to accurately approximate the H(curl) inner product. We numerically observe that the trained network outperforms finite element solutions by several orders of magnitude for smooth analytical solutions. Furthermore, to showcase the versatility of the method, we demonstrate that compatible FEINNs achieve high accuracy in solving surface PDEs such as the Darcy equation on a sphere. Additionally, the framework can integrate adaptive mesh refinements to effectively solve problems with localised features. We use an adaptive training strategy to train the network on a sequence of progressively adapted meshes. Finally, we compare compatible FEINNs with the adjoint neural network method for solving inverse problems. We consider a one-loop algorithm that trains the neural networks for unknowns and missing parameters using a loss function that includes PDE residual and data misfit terms. The algorithm is applied to identify space-varying physical parameters for the H(curl) model problem from partial, noisy, or boundary observations. We find that compatible FEINNs achieve accuracy and robustness comparable to, if not exceeding, the adjoint method in these scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
Spatiotemporal modeling based on manifold learning for collision dynamic prediction of thin-walled structures under oblique load Self-propelling, soft, and slender structures in fluids: Cosserat rods immersed in the velocity–vorticity formulation of the incompressible Navier–Stokes equations Harnessing dynamic turbulent dynamics in parrot optimization algorithm for complex high-dimensional engineering problems Mutual-information-based dimensional learning: Objective algorithms for identification of relevant dimensionless quantities On the mesh insensitivity of the edge-based smoothed finite element method for moving-domain problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1