Self-propelling, soft, and slender structures in fluids: Cosserat rods immersed in the velocity–vorticity formulation of the incompressible Navier–Stokes equations
Arman Tekinalp , Yashraj Bhosale , Songyuan Cui , Fan Kiat Chan , Mattia Gazzola
{"title":"Self-propelling, soft, and slender structures in fluids: Cosserat rods immersed in the velocity–vorticity formulation of the incompressible Navier–Stokes equations","authors":"Arman Tekinalp , Yashraj Bhosale , Songyuan Cui , Fan Kiat Chan , Mattia Gazzola","doi":"10.1016/j.cma.2025.117910","DOIUrl":null,"url":null,"abstract":"<div><div>We present a hybrid Eulerian–Lagrangian method for the direct simulation of three-dimensional, heterogeneous, active, and self-propelling structures made of soft fibers and operating in incompressible viscous flows. Fiber-based organization of matter is pervasive in nature and engineering, from biological architectures made of cilia, hair, muscles or bones to polymers, composite materials or soft robots. In nature, many such structures are adapted to manipulate flows for feeding, swimming or energy harvesting, through mechanisms that are often not fully understood. While simulations can support the analysis (and subsequent translational engineering) of these systems, extreme fibers’ aspect-ratios, large elastic deformations, two-way coupling with three-dimensional flows, and self-propulsion all render the problem numerically challenging. To address this, we couple Cosserat rod theory, where fibers’ dynamics is accurately captured in one-dimensional fashion, with the velocity–vorticity formulation of the Navier–Stokes equations, through a virtual boundary technique. The favorable properties of the resultant hydroelastic solver are demonstrated against a battery of benchmarks, and further showcased in a range of multi-physics scenarios, involving magnetic actuation, viscous streaming, biomechanics, multi-body interaction, and untethered swimming.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"440 ","pages":"Article 117910"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525001823","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a hybrid Eulerian–Lagrangian method for the direct simulation of three-dimensional, heterogeneous, active, and self-propelling structures made of soft fibers and operating in incompressible viscous flows. Fiber-based organization of matter is pervasive in nature and engineering, from biological architectures made of cilia, hair, muscles or bones to polymers, composite materials or soft robots. In nature, many such structures are adapted to manipulate flows for feeding, swimming or energy harvesting, through mechanisms that are often not fully understood. While simulations can support the analysis (and subsequent translational engineering) of these systems, extreme fibers’ aspect-ratios, large elastic deformations, two-way coupling with three-dimensional flows, and self-propulsion all render the problem numerically challenging. To address this, we couple Cosserat rod theory, where fibers’ dynamics is accurately captured in one-dimensional fashion, with the velocity–vorticity formulation of the Navier–Stokes equations, through a virtual boundary technique. The favorable properties of the resultant hydroelastic solver are demonstrated against a battery of benchmarks, and further showcased in a range of multi-physics scenarios, involving magnetic actuation, viscous streaming, biomechanics, multi-body interaction, and untethered swimming.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.