Evaluating planktic foraminiferal resilience during the Middle Eocene Climatic Optimum (MECO) in the Atlantic Ocean

IF 2.6 2区 地球科学 Q2 GEOGRAPHY, PHYSICAL Palaeogeography, Palaeoclimatology, Palaeoecology Pub Date : 2025-03-08 DOI:10.1016/j.palaeo.2025.112867
Silvia Sigismondi , Valeria Luciani , Laia Alegret , Thomas Westerhold
{"title":"Evaluating planktic foraminiferal resilience during the Middle Eocene Climatic Optimum (MECO) in the Atlantic Ocean","authors":"Silvia Sigismondi ,&nbsp;Valeria Luciani ,&nbsp;Laia Alegret ,&nbsp;Thomas Westerhold","doi":"10.1016/j.palaeo.2025.112867","DOIUrl":null,"url":null,"abstract":"<div><div>The Middle Eocene Climatic Optimum (MECO), centered around ∼40 Ma, is characterized by a steady decline in marine bulk and benthic carbonate δ<sup>18</sup>O values by approximately ∼1 ‰ over ∼400 kyr. This is typically interpreted as a 3–6 °C increase in global temperatures, followed by a rapid return to pre-event conditions. This event is increasingly attracting scientific attention, as it represents a natural experiment of the temperatures and pCO<sub>2</sub> levels that Earth may reach by the end of this century if anthropogenic greenhouse gas emissions are not reduced. The δ<sup>13</sup>C signal, along with biotic and paleoceanographic changes across the MECO, exhibits significant geographic heterogeneity, making this event still enigmatic. In particular, the biotic response remains poorly constrained. Here, we aim to address this gap by focusing on planktic foraminifera, which are highly sensitive to the physical and chemical state of the oceans and can offer a valuable long-term perspective on marine ecosystem resilience to global warming. We selected Ocean Drilling Program Sites 1051, 1263, and 702, which cover different latitudinal settings across the Atlantic Ocean and provide established age models and stable isotope constraints. Planktic foraminifera display a pronounced assemblage turnover across the MECO, primarily related to an increase in surface-water temperature that altered pelagic food webs. The intense warming caused a southward migration of warm-index taxa at Site 702, as also recorded for calcareous nannofossils. The warm-index <em>“</em>Large <em>Acarinina”</em> (&gt;150 μm) shows a marked and permanent decline within ∼250 kyr during the late stage of the MECO at Sites 1051 and 702, approximately 2 Myr before their evolutionary disappearance at the Bartonian-Priabonian boundary. This decline is widespread, being also recorded in the Tethys. We speculate that changes in microalgal symbionts may have impacted the success of this group. We also document a drop in the abundance of the genus <em>Chiloguembelina</em>, possibly related to enhanced oxygenation of its ecological niche, the oxygen deficient zone (ODZ). The planktic foraminiferal assemblages, though demonstrating some degree of plasticity by absorbing periodic stress extremes through community modifications and latitudinal migration, did not recover their pre-disturbance state. This indicates low stability during the MECO event and ultimately lack of resilience.</div></div>","PeriodicalId":19928,"journal":{"name":"Palaeogeography, Palaeoclimatology, Palaeoecology","volume":"667 ","pages":"Article 112867"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palaeogeography, Palaeoclimatology, Palaeoecology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003101822500152X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Middle Eocene Climatic Optimum (MECO), centered around ∼40 Ma, is characterized by a steady decline in marine bulk and benthic carbonate δ18O values by approximately ∼1 ‰ over ∼400 kyr. This is typically interpreted as a 3–6 °C increase in global temperatures, followed by a rapid return to pre-event conditions. This event is increasingly attracting scientific attention, as it represents a natural experiment of the temperatures and pCO2 levels that Earth may reach by the end of this century if anthropogenic greenhouse gas emissions are not reduced. The δ13C signal, along with biotic and paleoceanographic changes across the MECO, exhibits significant geographic heterogeneity, making this event still enigmatic. In particular, the biotic response remains poorly constrained. Here, we aim to address this gap by focusing on planktic foraminifera, which are highly sensitive to the physical and chemical state of the oceans and can offer a valuable long-term perspective on marine ecosystem resilience to global warming. We selected Ocean Drilling Program Sites 1051, 1263, and 702, which cover different latitudinal settings across the Atlantic Ocean and provide established age models and stable isotope constraints. Planktic foraminifera display a pronounced assemblage turnover across the MECO, primarily related to an increase in surface-water temperature that altered pelagic food webs. The intense warming caused a southward migration of warm-index taxa at Site 702, as also recorded for calcareous nannofossils. The warm-index Large Acarinina” (>150 μm) shows a marked and permanent decline within ∼250 kyr during the late stage of the MECO at Sites 1051 and 702, approximately 2 Myr before their evolutionary disappearance at the Bartonian-Priabonian boundary. This decline is widespread, being also recorded in the Tethys. We speculate that changes in microalgal symbionts may have impacted the success of this group. We also document a drop in the abundance of the genus Chiloguembelina, possibly related to enhanced oxygenation of its ecological niche, the oxygen deficient zone (ODZ). The planktic foraminiferal assemblages, though demonstrating some degree of plasticity by absorbing periodic stress extremes through community modifications and latitudinal migration, did not recover their pre-disturbance state. This indicates low stability during the MECO event and ultimately lack of resilience.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
10.00%
发文量
398
审稿时长
3.8 months
期刊介绍: Palaeogeography, Palaeoclimatology, Palaeoecology is an international medium for the publication of high quality and multidisciplinary, original studies and comprehensive reviews in the field of palaeo-environmental geology. The journal aims at bringing together data with global implications from research in the many different disciplines involved in palaeo-environmental investigations. By cutting across the boundaries of established sciences, it provides an interdisciplinary forum where issues of general interest can be discussed.
期刊最新文献
Oceanic redox condition and the evolution of Ediacaran life: Evidence from nitrogen isotopes and biogenic silica in the Yangtze Block, South China Marine redox evolution and organic matter accumulation in the end Guadalupian in NE Sichuan, South China Climate and lake ecosystem evolution over the last millennium on the north-eastern Tibetan Plateau: Insights from stable isotope records of gastropod shells in Xing Co The long-term dynamics of biodiversity and stability of the diatom community under climate warming in a Tibetan alpine lake Meridional shifts of Brazil-Malvinas Confluence since the Last Glacial Maximum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1