Meridional shifts of Brazil-Malvinas Confluence since the Last Glacial Maximum

IF 2.6 2区 地球科学 Q2 GEOGRAPHY, PHYSICAL Palaeogeography, Palaeoclimatology, Palaeoecology Pub Date : 2025-03-12 DOI:10.1016/j.palaeo.2025.112897
Fang Gu , Karin A.F. Zonneveld , Hermann Behling
{"title":"Meridional shifts of Brazil-Malvinas Confluence since the Last Glacial Maximum","authors":"Fang Gu ,&nbsp;Karin A.F. Zonneveld ,&nbsp;Hermann Behling","doi":"10.1016/j.palaeo.2025.112897","DOIUrl":null,"url":null,"abstract":"<div><div>The Brazil-Malvinas Confluence (BMC) is a highly dynamic convergence of surface currents in the southwestern South Atlantic, where the warm Brazil Current (BC) from the tropical Atlantic meets the cold Malvinas Current (MC) that originates from the northern branch of the Antarctic Circumpolar Current. Meridional shifts of the BMC play an important role in controlling the heat transfer from the tropical Atlantic to the higher latitudes of the South Atlantic. In this study, the marine core GeoB13861–1 is analyzed for pollen, spores, freshwater algae, and organic-walled dinoflagellate cysts (dinocysts) to reconstruct marine and terrestrial paleoenvironmental changes in southeastern South America since the Last Glacial Maximum (LGM). The results indicate that during LGM, the BMC was at its northernmost location due to the strong influence of the MC. During that period, exposed coastal areas of Argentina were dominated by salt marshes shaped by low global sea level. From ∼18 to 15 cal kyr BP, the BMC migrated southward, contributing to more humid conditions on the adjacent continent. As sea level rose, former salt marshes along the coast were gradually flooded. The increased presence of <em>Nothofagus</em> and <em>Podocarpus</em> pollen in the marine record suggests a slight expansion of Andean forests during the Late Glacial, indicating the adjacent continental regions shifted to wetter conditions. Notably, our study confirms that the signals of abrupt climate events, such as Heinrich Stadial 1 (HS1) and Younger Dryas (YD), are well-preserved in the marine sediment records. Our new findings provide clear evidence of the bi-polar sea saw effect during HS1, marked by abrupt ocean warming in the South Atlantic.</div></div>","PeriodicalId":19928,"journal":{"name":"Palaeogeography, Palaeoclimatology, Palaeoecology","volume":"667 ","pages":"Article 112897"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palaeogeography, Palaeoclimatology, Palaeoecology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031018225001828","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Brazil-Malvinas Confluence (BMC) is a highly dynamic convergence of surface currents in the southwestern South Atlantic, where the warm Brazil Current (BC) from the tropical Atlantic meets the cold Malvinas Current (MC) that originates from the northern branch of the Antarctic Circumpolar Current. Meridional shifts of the BMC play an important role in controlling the heat transfer from the tropical Atlantic to the higher latitudes of the South Atlantic. In this study, the marine core GeoB13861–1 is analyzed for pollen, spores, freshwater algae, and organic-walled dinoflagellate cysts (dinocysts) to reconstruct marine and terrestrial paleoenvironmental changes in southeastern South America since the Last Glacial Maximum (LGM). The results indicate that during LGM, the BMC was at its northernmost location due to the strong influence of the MC. During that period, exposed coastal areas of Argentina were dominated by salt marshes shaped by low global sea level. From ∼18 to 15 cal kyr BP, the BMC migrated southward, contributing to more humid conditions on the adjacent continent. As sea level rose, former salt marshes along the coast were gradually flooded. The increased presence of Nothofagus and Podocarpus pollen in the marine record suggests a slight expansion of Andean forests during the Late Glacial, indicating the adjacent continental regions shifted to wetter conditions. Notably, our study confirms that the signals of abrupt climate events, such as Heinrich Stadial 1 (HS1) and Younger Dryas (YD), are well-preserved in the marine sediment records. Our new findings provide clear evidence of the bi-polar sea saw effect during HS1, marked by abrupt ocean warming in the South Atlantic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
10.00%
发文量
398
审稿时长
3.8 months
期刊介绍: Palaeogeography, Palaeoclimatology, Palaeoecology is an international medium for the publication of high quality and multidisciplinary, original studies and comprehensive reviews in the field of palaeo-environmental geology. The journal aims at bringing together data with global implications from research in the many different disciplines involved in palaeo-environmental investigations. By cutting across the boundaries of established sciences, it provides an interdisciplinary forum where issues of general interest can be discussed.
期刊最新文献
Oceanic redox condition and the evolution of Ediacaran life: Evidence from nitrogen isotopes and biogenic silica in the Yangtze Block, South China Marine redox evolution and organic matter accumulation in the end Guadalupian in NE Sichuan, South China Climate and lake ecosystem evolution over the last millennium on the north-eastern Tibetan Plateau: Insights from stable isotope records of gastropod shells in Xing Co The long-term dynamics of biodiversity and stability of the diatom community under climate warming in a Tibetan alpine lake Meridional shifts of Brazil-Malvinas Confluence since the Last Glacial Maximum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1