Dynamic and stochastic optimization of algae cultivation process

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2025-03-01 DOI:10.1016/j.compchemeng.2025.109087
Sercan Kivanc , Burcu Beykal , Ozgun Deliismail , Hasan Sildir
{"title":"Dynamic and stochastic optimization of algae cultivation process","authors":"Sercan Kivanc ,&nbsp;Burcu Beykal ,&nbsp;Ozgun Deliismail ,&nbsp;Hasan Sildir","doi":"10.1016/j.compchemeng.2025.109087","DOIUrl":null,"url":null,"abstract":"<div><div>This study offers a realistic representation of system dynamics which accounts for light intensity, biomass, substrate, and nitrogen concentration, by employing stochastic programming techniques to account for spatial and temporal variations for algae growth. The optimization task focuses on lipid productivity and selectivity, which are crucial factors in the context of algal biofuel production. Different scenarios from likely and unlikely cases of model parameters were evaluated. Optimal initial conditions for key variables such as nitrogen, substrate, light, biomass, lipid, and surface light intensity are calculated, considering the uncertainty of the parameters as well as other governing equations. The results show that a remarkable 11.18% increase in lipid productivity compared to a reference scenario. Furthermore, in the stochastic case, our results highlight that uncertainty has a disproportionately large effect on biomass in comparison to lipid concentration, providing valuable insights into the behavior of the system under varying conditions. This provides a comprehensive exploration of the parameter uncertainty on lipid productivity and algal growth.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"198 ","pages":"Article 109087"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000912","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study offers a realistic representation of system dynamics which accounts for light intensity, biomass, substrate, and nitrogen concentration, by employing stochastic programming techniques to account for spatial and temporal variations for algae growth. The optimization task focuses on lipid productivity and selectivity, which are crucial factors in the context of algal biofuel production. Different scenarios from likely and unlikely cases of model parameters were evaluated. Optimal initial conditions for key variables such as nitrogen, substrate, light, biomass, lipid, and surface light intensity are calculated, considering the uncertainty of the parameters as well as other governing equations. The results show that a remarkable 11.18% increase in lipid productivity compared to a reference scenario. Furthermore, in the stochastic case, our results highlight that uncertainty has a disproportionately large effect on biomass in comparison to lipid concentration, providing valuable insights into the behavior of the system under varying conditions. This provides a comprehensive exploration of the parameter uncertainty on lipid productivity and algal growth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Advanced data-driven fault detection in gas-to-liquid plants A synchronous data-driven hybrid framework for optimizing hydrotreating units and hydrogen networks under uncertainty Editorial Board Predicting the temperature-dependent CMC of surfactant mixtures with graph neural networks Application of a temporal multiscale method for efficient simulation of degradation in PEM Water Electrolysis under dynamic operating conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1