Radiation Pressure-Driven Magneto-Gravitational Instability in Finitely Conducting Strongly Coupled Quantum Plasmas

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Brazilian Journal of Physics Pub Date : 2025-03-13 DOI:10.1007/s13538-025-01734-9
Mehak Mahajan, Ram Prasad Prajapati
{"title":"Radiation Pressure-Driven Magneto-Gravitational Instability in Finitely Conducting Strongly Coupled Quantum Plasmas","authors":"Mehak Mahajan,&nbsp;Ram Prasad Prajapati","doi":"10.1007/s13538-025-01734-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the radiation pressure-driven linear magneto-gravitational instability in finitely conducting strongly coupled quantum plasma within the framework of the generalized hydrodynamic fluid model. The radiation pressure assists in the dynamic behavior of the plasmas by modifying the dispersion properties of the gravitational instability. Normal mode analysis is applied to the linearized perturbation equations to derive the general dispersion relation. The dispersion relations are discussed in the hydrodynamic and kinetic limits in the transverse and longitudinal propagation modes. The Jeans instability criterion and Jeans length are significantly modified due to radiation pressure, quantum corrections, and strong coupling effects. The viscoelastic compression mode in the kinetic limit has been coupled with quantum diffraction and Alfvén mode. It is also observed that the radiation pressure, quantum effects, and viscoelastic parameters suppress the growth rates; thus, these have stabilizing effects on the gravitational instability. The effects of various parameters on the growth rate of the instability are calculated numerically, and the outcomes are represented graphically.</p></div>","PeriodicalId":499,"journal":{"name":"Brazilian Journal of Physics","volume":"55 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s13538-025-01734-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the radiation pressure-driven linear magneto-gravitational instability in finitely conducting strongly coupled quantum plasma within the framework of the generalized hydrodynamic fluid model. The radiation pressure assists in the dynamic behavior of the plasmas by modifying the dispersion properties of the gravitational instability. Normal mode analysis is applied to the linearized perturbation equations to derive the general dispersion relation. The dispersion relations are discussed in the hydrodynamic and kinetic limits in the transverse and longitudinal propagation modes. The Jeans instability criterion and Jeans length are significantly modified due to radiation pressure, quantum corrections, and strong coupling effects. The viscoelastic compression mode in the kinetic limit has been coupled with quantum diffraction and Alfvén mode. It is also observed that the radiation pressure, quantum effects, and viscoelastic parameters suppress the growth rates; thus, these have stabilizing effects on the gravitational instability. The effects of various parameters on the growth rate of the instability are calculated numerically, and the outcomes are represented graphically.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Brazilian Journal of Physics
Brazilian Journal of Physics 物理-物理:综合
CiteScore
2.50
自引率
6.20%
发文量
189
审稿时长
6.0 months
期刊介绍: The Brazilian Journal of Physics is a peer-reviewed international journal published by the Brazilian Physical Society (SBF). The journal publishes new and original research results from all areas of physics, obtained in Brazil and from anywhere else in the world. Contents include theoretical, practical and experimental papers as well as high-quality review papers. Submissions should follow the generally accepted structure for journal articles with basic elements: title, abstract, introduction, results, conclusions, and references.
期刊最新文献
The Aspects of \(^{12}\textrm{C}(p, \gamma )^{13}\textrm{N}\) Reaction in Astrophysical Regime Interaction of Gardner Dust Ion-Acoustic Multiple Solitons in a Dusty Plasma: Insights from Cassini Observations Study of the 10B(d,3He)9Be Reaction at a Deuterons Energy of 14.5 MeV Combined Impacts of Self-Generated and Non-uniform Magnetic Fields on the Acceleration of Plasma Exploring the Structural, Optoelectronic, Transport, and Radiation Shielding Capabilities of Al-based Chalcogenides for Energy Technologies: Spin Polarized Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1