SCN3B is an Anti-breast Cancer Molecule with Migration Inhibition Effect.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Genetics Pub Date : 2025-03-12 DOI:10.1007/s10528-025-11059-6
Yinfeng Zhao, Jianzhong Ye, Yun Liang, Jia Chen
{"title":"SCN3B is an Anti-breast Cancer Molecule with Migration Inhibition Effect.","authors":"Yinfeng Zhao, Jianzhong Ye, Yun Liang, Jia Chen","doi":"10.1007/s10528-025-11059-6","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is a prevalent and highly heterogeneous malignancy that continues to be a major global health concern. Voltage-gated sodium channels are primarily known for their role in neuronal excitability, but emerging evidence suggests their involvement in the pathogenesis of various cancers, including breast cancer. However, the effect of β-subunits on breast cancer cells is not yet studied. SCN3B, as a modulatory subunit, is of particular interest due to its less understood role in cancer biology. This research comprehensively investigates the clinical associations, diagnostic potential, and functional role of SCN3B in breast cancer, shedding light on its diverse implications from patient outcomes to molecular mechanisms. Our methods included clinical data analysis from The Cancer Genome Atlas (TCGA) breast cancer dataset, diagnostic analysis through ROC curves, differential gene expression analysis, SCN3B expression assessment in cell lines, overexpression experiments, and functional assays. Additionally, we constructed a protein-protein interaction network to explore potential mechanisms underlying SCN3B's impact. The study revealed significant clinical associations between SCN3B expression and various parameters such as tumor stage, race, age, histological type, molecular subtype, and hormone receptor status. SCN3B demonstrated strong diagnostic potential with an AUC of 0.95. It influenced the expression of over 800 genes, primarily associated with cell migration and extracellular matrix interactions. SCN3B exhibited distinct expression patterns between normal and breast cancer cell lines and successfully overexpressed in various breast cancer cell lines. This overexpression inhibited cell migration and invasion. Our research emphasizes SCN3B's clinical relevance, diagnostic potential, and influence on cell behavior in breast cancer, offering insights into its multifaceted role and therapeutic implications.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11059-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer is a prevalent and highly heterogeneous malignancy that continues to be a major global health concern. Voltage-gated sodium channels are primarily known for their role in neuronal excitability, but emerging evidence suggests their involvement in the pathogenesis of various cancers, including breast cancer. However, the effect of β-subunits on breast cancer cells is not yet studied. SCN3B, as a modulatory subunit, is of particular interest due to its less understood role in cancer biology. This research comprehensively investigates the clinical associations, diagnostic potential, and functional role of SCN3B in breast cancer, shedding light on its diverse implications from patient outcomes to molecular mechanisms. Our methods included clinical data analysis from The Cancer Genome Atlas (TCGA) breast cancer dataset, diagnostic analysis through ROC curves, differential gene expression analysis, SCN3B expression assessment in cell lines, overexpression experiments, and functional assays. Additionally, we constructed a protein-protein interaction network to explore potential mechanisms underlying SCN3B's impact. The study revealed significant clinical associations between SCN3B expression and various parameters such as tumor stage, race, age, histological type, molecular subtype, and hormone receptor status. SCN3B demonstrated strong diagnostic potential with an AUC of 0.95. It influenced the expression of over 800 genes, primarily associated with cell migration and extracellular matrix interactions. SCN3B exhibited distinct expression patterns between normal and breast cancer cell lines and successfully overexpressed in various breast cancer cell lines. This overexpression inhibited cell migration and invasion. Our research emphasizes SCN3B's clinical relevance, diagnostic potential, and influence on cell behavior in breast cancer, offering insights into its multifaceted role and therapeutic implications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
期刊最新文献
SCN3B is an Anti-breast Cancer Molecule with Migration Inhibition Effect. Effects of HLA-DRA, HLA-DQA1 and IL-6 Gene Variations to Glatiramer Acetate Resistance in Multiple Sclerosis Patients. Harnessing State-of-the-Art Gene Therapy to Transform Oral Cancer Treatment. MSI1 Accelerates Prostate Cancer Cell Proliferation, Migration and Glycolysis by Promoting ABHD2 Transcription. Experimental Validation of miR-4443, miR-572, and miR-150-5p in Serum and Tissue of Breast Cancer Patients as a Potential Diagnostic Biomarker: A Study Based on Bioinformatics Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1