{"title":"Combining integral equation closures with force density functional theory for the study of inhomogeneous fluids.","authors":"S M Tschopp, H Vahid, A Sharma, J M Brader","doi":"10.1039/d4sm01262c","DOIUrl":null,"url":null,"abstract":"<p><p>Classical density functional theory (DFT) is a powerful framework to study inhomogeneous fluids. Its standard form is based on the knowledge of a generating free energy functional. If this is known exactly, then the results obtained by using standard DFT or its alternative, recently developed version, force-DFT, are the same. If the free energy functional is known only approximately then these two routes produce different outcomes. However, as we show in this work, force-DFT has the advantage that it is also implementable without knowledge of the free energy functional, by using instead liquid-state integral equation closures. This broadens the range of systems that can be explored, since free energy functionals are generally difficult to approximate. In this paper we investigate the utility of using inhomogeneous integral equation closures within force-DFT thus demonstrating the versatility and accuracy of this approach.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01262c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Classical density functional theory (DFT) is a powerful framework to study inhomogeneous fluids. Its standard form is based on the knowledge of a generating free energy functional. If this is known exactly, then the results obtained by using standard DFT or its alternative, recently developed version, force-DFT, are the same. If the free energy functional is known only approximately then these two routes produce different outcomes. However, as we show in this work, force-DFT has the advantage that it is also implementable without knowledge of the free energy functional, by using instead liquid-state integral equation closures. This broadens the range of systems that can be explored, since free energy functionals are generally difficult to approximate. In this paper we investigate the utility of using inhomogeneous integral equation closures within force-DFT thus demonstrating the versatility and accuracy of this approach.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.