Using Large Language Models in the Diagnosis of Acute Cholecystitis: Assessing Accuracy and Guidelines Compliance.

IF 1 4区 医学 Q3 SURGERY American Surgeon Pub Date : 2025-03-12 DOI:10.1177/00031348251323719
Marta Goglia, Arianna Cicolani, Francesco Maria Carrano, Niccolò Petrucciani, Francesco D'Angelo, Marco Pace, Lucio Chiarini, Gianfranco Silecchia, Paolo Aurello
{"title":"Using Large Language Models in the Diagnosis of Acute Cholecystitis: Assessing Accuracy and Guidelines Compliance.","authors":"Marta Goglia, Arianna Cicolani, Francesco Maria Carrano, Niccolò Petrucciani, Francesco D'Angelo, Marco Pace, Lucio Chiarini, Gianfranco Silecchia, Paolo Aurello","doi":"10.1177/00031348251323719","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundLarge language models (LLMs) are advanced tools capable of understanding and generating human-like text. This study evaluated the accuracy of several commercial LLMs in addressing clinical questions related to diagnosis and management of acute cholecystitis, as outlined in the Tokyo Guidelines 2018 (TG18). We assessed their congruence with the expert panel discussions presented in the guidelines.MethodsWe evaluated ChatGPT4.0, Gemini Advanced, and GPTo1-preview on ten clinical questions. Eight derived from TG18, and two were formulated by the authors. Two authors independently rated the accuracy of each LLM's responses on a four-point scale: (1) accurate and comprehensive, (2) accurate but not comprehensive, (3) partially accurate, partially inaccurate, and (4) entirely inaccurate. A third author resolved any scoring discrepancies. Then, we comparatively analyzed the performance of ChatGPT4.0 against newer large language models (LLMs), specifically Gemini Advanced and GPTo1-preview, on the same set of questions to delineate their respective strengths and limitations.ResultsChatGPT4.0 provided consistent responses for 90% of the questions. It delivered \"accurate and comprehensive\" answers for 4/10 (40%) questions and \"accurate but not comprehensive\" answers for 5/10 (50%). One response (10%) was rated as \"partially accurate, partially inaccurate.\" Gemini Advanced demonstrated higher accuracy on some questions but yielded a similar percentage of \"partially accurate, partially inaccurate\" responses. Notably, neither model produced \"entirely inaccurate\" answers.DiscussionLLMs, such as ChatGPT and Gemini Advanced, demonstrate potential in accurately addressing clinical questions regarding acute cholecystitis. With awareness of their limitations, their careful implementation, and ongoing refinement, LLMs could serve as valuable resources for physician education and patient information, potentially improving clinical decision-making in the future.</p>","PeriodicalId":7782,"journal":{"name":"American Surgeon","volume":" ","pages":"31348251323719"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Surgeon","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00031348251323719","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

BackgroundLarge language models (LLMs) are advanced tools capable of understanding and generating human-like text. This study evaluated the accuracy of several commercial LLMs in addressing clinical questions related to diagnosis and management of acute cholecystitis, as outlined in the Tokyo Guidelines 2018 (TG18). We assessed their congruence with the expert panel discussions presented in the guidelines.MethodsWe evaluated ChatGPT4.0, Gemini Advanced, and GPTo1-preview on ten clinical questions. Eight derived from TG18, and two were formulated by the authors. Two authors independently rated the accuracy of each LLM's responses on a four-point scale: (1) accurate and comprehensive, (2) accurate but not comprehensive, (3) partially accurate, partially inaccurate, and (4) entirely inaccurate. A third author resolved any scoring discrepancies. Then, we comparatively analyzed the performance of ChatGPT4.0 against newer large language models (LLMs), specifically Gemini Advanced and GPTo1-preview, on the same set of questions to delineate their respective strengths and limitations.ResultsChatGPT4.0 provided consistent responses for 90% of the questions. It delivered "accurate and comprehensive" answers for 4/10 (40%) questions and "accurate but not comprehensive" answers for 5/10 (50%). One response (10%) was rated as "partially accurate, partially inaccurate." Gemini Advanced demonstrated higher accuracy on some questions but yielded a similar percentage of "partially accurate, partially inaccurate" responses. Notably, neither model produced "entirely inaccurate" answers.DiscussionLLMs, such as ChatGPT and Gemini Advanced, demonstrate potential in accurately addressing clinical questions regarding acute cholecystitis. With awareness of their limitations, their careful implementation, and ongoing refinement, LLMs could serve as valuable resources for physician education and patient information, potentially improving clinical decision-making in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
American Surgeon
American Surgeon 医学-外科
CiteScore
1.40
自引率
0.00%
发文量
623
期刊介绍: The American Surgeon is a monthly peer-reviewed publication published by the Southeastern Surgical Congress. Its area of concentration is clinical general surgery, as defined by the content areas of the American Board of Surgery: alimentary tract (including bariatric surgery), abdomen and its contents, breast, skin and soft tissue, endocrine system, solid organ transplantation, pediatric surgery, surgical critical care, surgical oncology (including head and neck surgery), trauma and emergency surgery, and vascular surgery.
期刊最新文献
Galen's Surgical Legacy: Treating the Children in Ancient Rome. South Asian Immigration to the US: From Collective Farms to High-Tech Cities Through H-1B Visas. Using Large Language Models in the Diagnosis of Acute Cholecystitis: Assessing Accuracy and Guidelines Compliance. Letter re: Estimated Blood Volume (EBV)-Based Dosing as an Alternative to BW-Based Dosing. National Analysis of Clinical Outcomes Associated With Cirrhotic Blunt Trauma Patients Undergoing Emergency Laparotomy Versus Non-operative Management: A Propensity Case-Matched Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1