Deep learning-based evaluation of panoramic radiographs for osteoporosis screening: a systematic review and meta-analysis.

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING BMC Medical Imaging Pub Date : 2025-03-12 DOI:10.1186/s12880-025-01626-z
Ali Tarighatnia, Masoud Amanzadeh, Mahnaz Hamedan, Alireza Mohammadnia, Nader D Nader
{"title":"Deep learning-based evaluation of panoramic radiographs for osteoporosis screening: a systematic review and meta-analysis.","authors":"Ali Tarighatnia, Masoud Amanzadeh, Mahnaz Hamedan, Alireza Mohammadnia, Nader D Nader","doi":"10.1186/s12880-025-01626-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteoporosis is a complex condition that drives research into its causes, diagnosis, treatment, and prevention, significantly affecting patients and healthcare providers in various aspects of life. Research is exploring orthopantomogram (OPG) radiography for osteoporosis screening instead of bone mineral density (BMD) assessments. Although this method uses various indicators, manual analysis can be challenging. Machine learning and deep learning techniques have been developed to address this. This systematic review and meta-analysis is the first to evaluate the accuracy of deep learning models in predicting osteoporosis from OPG radiographs, providing evidence for their performance and clinical use.</p><p><strong>Methods: </strong>A literature search was conducted in MEDLINE, Scopus, and Web of Science up to February 10, 2025, using the keywords related to deep learning, osteoporosis, and panoramic radiography. We conducted title, abstract, and full-text screening based on inclusion/exclusion criteria. Meta-analysis was performed using a bivariate random-effects model to pool diagnostic accuracy measures, and subgroup analyses explored sources of heterogeneity.</p><p><strong>Results: </strong>We found 204 articles, removed 189 duplicates and irrelevant studies, assessed 15articles, and ultimately, seven studies were selected. The DL models showed AUC values of 66.8-99.8%, with sensitivity and specificity ranging from 59 to 97% and 64.9-100%, respectively. No significant differences in diagnostic accuracy were found among subgroups. AlexNet had the highest performance, achieving a sensitivity of 0.89 and a specificity of 0.99. Sensitivity analysis revealed that excluding outliers had little impact on the results. Deeks' funnel plot indicated no significant publication bias (P = 0.54).</p><p><strong>Conclusions: </strong>This systematic review indicates that deep learning models for osteoporosis diagnosis achieved 80% sensitivity, 92% specificity, and 93% AUC. Models like AlexNet and ResNet demonstrate effectiveness. These findings suggest that DL models are promising for noninvasive early detection, but more extensive multicenter studies are necessary to validate their efficacy in at-risk groups.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"86"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01626-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Osteoporosis is a complex condition that drives research into its causes, diagnosis, treatment, and prevention, significantly affecting patients and healthcare providers in various aspects of life. Research is exploring orthopantomogram (OPG) radiography for osteoporosis screening instead of bone mineral density (BMD) assessments. Although this method uses various indicators, manual analysis can be challenging. Machine learning and deep learning techniques have been developed to address this. This systematic review and meta-analysis is the first to evaluate the accuracy of deep learning models in predicting osteoporosis from OPG radiographs, providing evidence for their performance and clinical use.

Methods: A literature search was conducted in MEDLINE, Scopus, and Web of Science up to February 10, 2025, using the keywords related to deep learning, osteoporosis, and panoramic radiography. We conducted title, abstract, and full-text screening based on inclusion/exclusion criteria. Meta-analysis was performed using a bivariate random-effects model to pool diagnostic accuracy measures, and subgroup analyses explored sources of heterogeneity.

Results: We found 204 articles, removed 189 duplicates and irrelevant studies, assessed 15articles, and ultimately, seven studies were selected. The DL models showed AUC values of 66.8-99.8%, with sensitivity and specificity ranging from 59 to 97% and 64.9-100%, respectively. No significant differences in diagnostic accuracy were found among subgroups. AlexNet had the highest performance, achieving a sensitivity of 0.89 and a specificity of 0.99. Sensitivity analysis revealed that excluding outliers had little impact on the results. Deeks' funnel plot indicated no significant publication bias (P = 0.54).

Conclusions: This systematic review indicates that deep learning models for osteoporosis diagnosis achieved 80% sensitivity, 92% specificity, and 93% AUC. Models like AlexNet and ResNet demonstrate effectiveness. These findings suggest that DL models are promising for noninvasive early detection, but more extensive multicenter studies are necessary to validate their efficacy in at-risk groups.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
期刊最新文献
Deep learning-based evaluation of panoramic radiographs for osteoporosis screening: a systematic review and meta-analysis. Quantifying anterior segment vascular changes in thyroid eye disease using optical coherence tomography angiography. Convolutional block attention gate-based Unet framework for microaneurysm segmentation using retinal fundus images. CT-based radiomics models using intralesional and different perilesional signatures in predicting the microvascular density of hepatic alveolar echinococcosis. 18F-FDG PET/CT metabolic parameter changes to assess vascular inflammatory response in patients with diffuse large B-cell lymphoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1