{"title":"Enhanced Multi-Class Breast Cancer Classification from Whole-Slide Histopathology Images Using a Proposed Deep Learning Model.","authors":"Adnan Rafiq, Arfan Jaffar, Ghazanfar Latif, Sohail Masood, Sherif E Abdelhamid","doi":"10.3390/diagnostics15050582","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Breast cancer is among the most frequently diagnosed cancers and leading cause of mortality worldwide. The accurate classification of breast cancer from the histology photographs is very important for the diagnosis and effective treatment planning. <b>Methods</b>: In this article, we propose a DenseNet121-based deep learning model for breast cancer detection and multi-class classification. The experiments were performed using whole-slide histopathology images collected from the BreakHis dataset. <b>Results</b>: The proposed method attained state-of-the-art performance with a 98.50% accuracy and an AUC of 0.98 for the binary classification. In multi-class classification, it obtained competitive results with 92.50% accuracy and an AUC of 0.94. <b>Conclusions</b>: The proposed model outperforms state-of-the-art methods in distinguishing between benign and malignant tumors as well as in classifying specific malignancy subtypes. This study highlights the potential of deep learning in breast cancer diagnosis and establishes the foundation for developing advanced diagnostic tools.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899611/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15050582","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Breast cancer is among the most frequently diagnosed cancers and leading cause of mortality worldwide. The accurate classification of breast cancer from the histology photographs is very important for the diagnosis and effective treatment planning. Methods: In this article, we propose a DenseNet121-based deep learning model for breast cancer detection and multi-class classification. The experiments were performed using whole-slide histopathology images collected from the BreakHis dataset. Results: The proposed method attained state-of-the-art performance with a 98.50% accuracy and an AUC of 0.98 for the binary classification. In multi-class classification, it obtained competitive results with 92.50% accuracy and an AUC of 0.94. Conclusions: The proposed model outperforms state-of-the-art methods in distinguishing between benign and malignant tumors as well as in classifying specific malignancy subtypes. This study highlights the potential of deep learning in breast cancer diagnosis and establishes the foundation for developing advanced diagnostic tools.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.