Chih-Hao Lien, Thomas Vande Casteele, Maarten Laroy, Margot G A Van Cauwenberge, Ronald Peeters, Stefan Sunaert, Koen Van Laere, Patrick Dupont, Filip Bouckaert, Louise Emsell, Mathieu Vandenbulcke, Jan Van den Stock
{"title":"Are resting-state network alterations in late-life depression related to synaptic density? Findings of a combined 11C-UCB-J PET and fMRI study.","authors":"Chih-Hao Lien, Thomas Vande Casteele, Maarten Laroy, Margot G A Van Cauwenberge, Ronald Peeters, Stefan Sunaert, Koen Van Laere, Patrick Dupont, Filip Bouckaert, Louise Emsell, Mathieu Vandenbulcke, Jan Van den Stock","doi":"10.1093/cercor/bhaf028","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the relationship between resting-state functional magnetic resonance imaging (rs-fMRI) topological properties and synaptic vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) synaptic density (SD) in late-life depression (LLD). 18 LLD patients and 33 healthy controls underwent rs-fMRI, 3D T1-weighted MRI, and 11C-UCB-J PET scans to assess SD. The rs-fMRI data were utilized to construct weighted networks for calculating four global topological metrics, including clustering coefficient, characteristic path length, global efficiency, and small-worldness, and six nodal metrics, including nodal clustering coefficient, nodal characteristic path length, nodal degree, nodal strength, local efficiency, and betweenness centrality. The 11C-UCB-J PET provided standardized uptake value ratios as SD measures. LLD patients exhibited preserved global topological organization, with reduced nodal properties in regions associated with LLD, such as the medial prefrontal cortex (mPFC), and increased nodal properties in the basal ganglia and cerebellar regions. Notably, a negative correlation was observed between betweenness centrality in the mPFC and depressive symptom severity. No significant alterations in SD or associations between rs-fMRI topological properties and SD were found, challenging the hypothesis that SD alterations are the molecular basis for rs-fMRI topological changes in LLD. Our findings suggest other molecular mechanisms may underlie the observed functional connectivity alterations in these patients.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf028","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the relationship between resting-state functional magnetic resonance imaging (rs-fMRI) topological properties and synaptic vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) synaptic density (SD) in late-life depression (LLD). 18 LLD patients and 33 healthy controls underwent rs-fMRI, 3D T1-weighted MRI, and 11C-UCB-J PET scans to assess SD. The rs-fMRI data were utilized to construct weighted networks for calculating four global topological metrics, including clustering coefficient, characteristic path length, global efficiency, and small-worldness, and six nodal metrics, including nodal clustering coefficient, nodal characteristic path length, nodal degree, nodal strength, local efficiency, and betweenness centrality. The 11C-UCB-J PET provided standardized uptake value ratios as SD measures. LLD patients exhibited preserved global topological organization, with reduced nodal properties in regions associated with LLD, such as the medial prefrontal cortex (mPFC), and increased nodal properties in the basal ganglia and cerebellar regions. Notably, a negative correlation was observed between betweenness centrality in the mPFC and depressive symptom severity. No significant alterations in SD or associations between rs-fMRI topological properties and SD were found, challenging the hypothesis that SD alterations are the molecular basis for rs-fMRI topological changes in LLD. Our findings suggest other molecular mechanisms may underlie the observed functional connectivity alterations in these patients.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.