Both direct and indirect suppression of MCL1 synergizes with BCLXL inhibition in preclinical models of gastric cancer.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY Cell Death & Disease Pub Date : 2025-03-12 DOI:10.1038/s41419-025-07481-8
Li-Ping Zhang, Yu-Min Wei, Ming-Jie Luo, Shu-Yue Ren, Xiang-Wen Zhan, Chao Wang, Ze-Feng Li, Rui-Min Zhu, Shuo Yan, Yu Cheng, Jia-Li Xu, Xing-Jiu Yang, Ke-Lei Du, Jin-Qing Wang, Guan-Nan Zhang, De-Xiao Du, Ran Gao, Dong-Bing Zhao, Jia-Nan Gong
{"title":"Both direct and indirect suppression of MCL1 synergizes with BCLXL inhibition in preclinical models of gastric cancer.","authors":"Li-Ping Zhang, Yu-Min Wei, Ming-Jie Luo, Shu-Yue Ren, Xiang-Wen Zhan, Chao Wang, Ze-Feng Li, Rui-Min Zhu, Shuo Yan, Yu Cheng, Jia-Li Xu, Xing-Jiu Yang, Ke-Lei Du, Jin-Qing Wang, Guan-Nan Zhang, De-Xiao Du, Ran Gao, Dong-Bing Zhao, Jia-Nan Gong","doi":"10.1038/s41419-025-07481-8","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the progress of treatment in gastric cancer (GC), the overall outcomes remain poor in patients with advanced diseases, underscoring the urgency to develop more effective treatment strategies. BH3-mimetic drugs, which inhibit the pro-survival BCL2 family proteins, have demonstrated great therapeutic potential in cancer therapy. Although previous studies have implicated a role of targeting the cell survival pathway in GC, the contribution of different pro-survival BCL2 family proteins in promoting survival and mediating resistance to current standard therapies in GC remains unclear. A systematic study to elucidate the hierarchy of these proteins using clinically more relevant GC models is essential to identify the most effective therapeutic target(s) and rational combination strategies for improving GC therapy. Here, we provide evidence from both in vitro and in vivo studies using a broad panel of GC cell lines, tumoroids, and xenograft models to demonstrate that BCLXL and MCL1, but not other pro-survival BCL2 family proteins, are crucial for GC cells survival. While small molecular inhibitors of BCLXL or MCL1 exhibited some single-agent activity, their combination sufficed to cause maximum killing. However, due to the unsolved cardiotoxicity associated with direct MCL1 inhibitors, finding combinations of agents that indirectly target MCL1 and enable the reduction of doses of BCLXL inhibitors while maintaining their anti-neoplastic effects is potentially a feasible approach for the further development of these compounds. Importantly, inhibiting BCLXL synergized significantly with anti-mitotic and HER2-targeting drugs, leading to enhanced anti-tumour activity with tolerable toxicity in preclinical GC models. Mechanistically, anti-mitotic chemotherapies induced MCL1 degradation via the ubiquitin-proteasome pathway mainly through FBXW7, whereas HER2-targeting drugs suppressed MCL1 transcription via the STAT3/SRF axis. Moreover, co-targeting STAT3 and BCLXL also exhibited synergistic killing, extending beyond HER2-amplified GC. Collectively, our results provide mechanistic rationale and pre-clinical evidence for co-targeting BCLXL and MCL1 (both directly and indirectly) in GC. (i) Gastric cancer cells rely on BCLXL and, to a lesser degree, on MCL1 for survival. The dual inhibition of BCLXL and MCL1 with small molecular inhibitors acts synergistically to kill GC cells, regardless of their TCGA molecular subtypes or the presence of poor prognostic markers. While the effect of S63845 is mediated by both BAX and BAK in most cases, BAX, rather than BAK, acts as the primary mediator of BCLXLi in GC cells. (ii) Inhibiting BCLXL significantly synergizes with anti-mitotic and HER2-targeting drugs, leading to enhanced anti-tumour activity with tolerable toxicity in preclinical GC models. Mechanistically, anti-mitotic chemotherapies induce MCL1 degradation via the ubiquitin-proteasome pathway mainly through FBXW7, whereas HER2-targeting drugs suppress MCL1 transcription via the STAT3/SRF axis. The combination of the STAT3 inhibitor and BCLXL inhibitor also exhibits synergistic killing, extending beyond HER2-amplified GC.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"170"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904182/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07481-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the progress of treatment in gastric cancer (GC), the overall outcomes remain poor in patients with advanced diseases, underscoring the urgency to develop more effective treatment strategies. BH3-mimetic drugs, which inhibit the pro-survival BCL2 family proteins, have demonstrated great therapeutic potential in cancer therapy. Although previous studies have implicated a role of targeting the cell survival pathway in GC, the contribution of different pro-survival BCL2 family proteins in promoting survival and mediating resistance to current standard therapies in GC remains unclear. A systematic study to elucidate the hierarchy of these proteins using clinically more relevant GC models is essential to identify the most effective therapeutic target(s) and rational combination strategies for improving GC therapy. Here, we provide evidence from both in vitro and in vivo studies using a broad panel of GC cell lines, tumoroids, and xenograft models to demonstrate that BCLXL and MCL1, but not other pro-survival BCL2 family proteins, are crucial for GC cells survival. While small molecular inhibitors of BCLXL or MCL1 exhibited some single-agent activity, their combination sufficed to cause maximum killing. However, due to the unsolved cardiotoxicity associated with direct MCL1 inhibitors, finding combinations of agents that indirectly target MCL1 and enable the reduction of doses of BCLXL inhibitors while maintaining their anti-neoplastic effects is potentially a feasible approach for the further development of these compounds. Importantly, inhibiting BCLXL synergized significantly with anti-mitotic and HER2-targeting drugs, leading to enhanced anti-tumour activity with tolerable toxicity in preclinical GC models. Mechanistically, anti-mitotic chemotherapies induced MCL1 degradation via the ubiquitin-proteasome pathway mainly through FBXW7, whereas HER2-targeting drugs suppressed MCL1 transcription via the STAT3/SRF axis. Moreover, co-targeting STAT3 and BCLXL also exhibited synergistic killing, extending beyond HER2-amplified GC. Collectively, our results provide mechanistic rationale and pre-clinical evidence for co-targeting BCLXL and MCL1 (both directly and indirectly) in GC. (i) Gastric cancer cells rely on BCLXL and, to a lesser degree, on MCL1 for survival. The dual inhibition of BCLXL and MCL1 with small molecular inhibitors acts synergistically to kill GC cells, regardless of their TCGA molecular subtypes or the presence of poor prognostic markers. While the effect of S63845 is mediated by both BAX and BAK in most cases, BAX, rather than BAK, acts as the primary mediator of BCLXLi in GC cells. (ii) Inhibiting BCLXL significantly synergizes with anti-mitotic and HER2-targeting drugs, leading to enhanced anti-tumour activity with tolerable toxicity in preclinical GC models. Mechanistically, anti-mitotic chemotherapies induce MCL1 degradation via the ubiquitin-proteasome pathway mainly through FBXW7, whereas HER2-targeting drugs suppress MCL1 transcription via the STAT3/SRF axis. The combination of the STAT3 inhibitor and BCLXL inhibitor also exhibits synergistic killing, extending beyond HER2-amplified GC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
期刊最新文献
Correction: Cardiac-specific CGI-58 deficiency activates the ER stress pathway to promote heart failure in mice. High glucose levels promote glycolysis and cholesterol synthesis via ERRα and suppress the autophagy-lysosomal pathway in endometrial cancer. TFE3 and HIF1α regulates the expression of SHMT2 isoforms via alternative promoter utilization in ovarian cancer cells. Therapeutic targeting de novo purine biosynthesis driven by β-catenin-dependent PPAT upregulation in hepatoblastoma. Ubiquitination of gasdermin D N-terminal domain directs its membrane translocation and pore formation during pyroptosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1