{"title":"Breast Cancer Detection via Multi-Tiered Self-Contrastive Learning in Microwave Radiometric Imaging.","authors":"Christoforos Galazis, Huiyi Wu, Igor Goryanin","doi":"10.3390/diagnostics15050549","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Early and accurate detection of breast cancer is crucial for improving treatment outcomes and survival rates. To achieve this, innovative imaging technologies such as microwave radiometry (MWR)-which measures internal tissue temperature-combined with advanced diagnostic methods like deep learning are essential. <b>Methods:</b> To address this need, we propose a hierarchical self-contrastive model for analyzing MWR data, called Joint-MWR (J-MWR). J-MWR focuses on comparing temperature variations within an individual by analyzing corresponding sub-regions of the two breasts, rather than across different samples. This approach enables the detection of subtle thermal abnormalities that may indicate potential issues. <b>Results:</b> We evaluated J-MWR on a dataset of 4932 patients, demonstrating improvements over existing MWR-based neural networks and conventional contrastive learning methods. The model achieved a Matthews correlation coefficient of 0.74 ± 0.02, reflecting its robust performance. <b>Conclusions:</b> These results emphasize the potential of intra-subject temperature comparison and the use of deep learning to replicate traditional feature extraction techniques, thereby improving accuracy while maintaining high generalizability.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898418/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15050549","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Early and accurate detection of breast cancer is crucial for improving treatment outcomes and survival rates. To achieve this, innovative imaging technologies such as microwave radiometry (MWR)-which measures internal tissue temperature-combined with advanced diagnostic methods like deep learning are essential. Methods: To address this need, we propose a hierarchical self-contrastive model for analyzing MWR data, called Joint-MWR (J-MWR). J-MWR focuses on comparing temperature variations within an individual by analyzing corresponding sub-regions of the two breasts, rather than across different samples. This approach enables the detection of subtle thermal abnormalities that may indicate potential issues. Results: We evaluated J-MWR on a dataset of 4932 patients, demonstrating improvements over existing MWR-based neural networks and conventional contrastive learning methods. The model achieved a Matthews correlation coefficient of 0.74 ± 0.02, reflecting its robust performance. Conclusions: These results emphasize the potential of intra-subject temperature comparison and the use of deep learning to replicate traditional feature extraction techniques, thereby improving accuracy while maintaining high generalizability.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.