{"title":"Mixture of Expert-Based SoftMax-Weighted Box Fusion for Robust Lesion Detection in Ultrasound Imaging.","authors":"Se-Yeol Rhyou, Minyung Yu, Jae-Chern Yoo","doi":"10.3390/diagnostics15050588","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Ultrasound (US) imaging plays a crucial role in the early detection and treatment of hepatocellular carcinoma (HCC). However, challenges such as speckle noise, low contrast, and diverse lesion morphology hinder its diagnostic accuracy. <b>Methods:</b> To address these issues, we propose CSM-FusionNet, a novel framework that integrates clustering, SoftMax-weighted Box Fusion (SM-WBF), and padding. Using raw US images from a leading hospital, Samsung Medical Center (SMC), we applied intensity adjustment, adaptive histogram equalization, low-pass, and high-pass filters to reduce noise and enhance resolution. Data augmentation generated ten images per one raw US image, allowing the training of 10 YOLOv8 networks. The mAP@0.5 of each network was used as SoftMax-derived weights in SM-WBF. Threshold-lowered bounding boxes were clustered using Density-Based Spatial Clustering of Applications with Noise (DBSCAN), and outliers were managed within clusters. SM-WBF reduced redundant boxes, and padding enriched features, improving classification accuracy. <b>Results:</b> The accuracy improved from 82.48% to 97.58% with sensitivity reaching 100%. The framework increased lesion detection accuracy from 56.11% to 95.56% after clustering and SM-WBF. <b>Conclusions:</b> CSM-FusionNet demonstrates the potential to significantly improve diagnostic reliability in US-based lesion detection, aiding precise clinical decision-making.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899514/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15050588","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Ultrasound (US) imaging plays a crucial role in the early detection and treatment of hepatocellular carcinoma (HCC). However, challenges such as speckle noise, low contrast, and diverse lesion morphology hinder its diagnostic accuracy. Methods: To address these issues, we propose CSM-FusionNet, a novel framework that integrates clustering, SoftMax-weighted Box Fusion (SM-WBF), and padding. Using raw US images from a leading hospital, Samsung Medical Center (SMC), we applied intensity adjustment, adaptive histogram equalization, low-pass, and high-pass filters to reduce noise and enhance resolution. Data augmentation generated ten images per one raw US image, allowing the training of 10 YOLOv8 networks. The mAP@0.5 of each network was used as SoftMax-derived weights in SM-WBF. Threshold-lowered bounding boxes were clustered using Density-Based Spatial Clustering of Applications with Noise (DBSCAN), and outliers were managed within clusters. SM-WBF reduced redundant boxes, and padding enriched features, improving classification accuracy. Results: The accuracy improved from 82.48% to 97.58% with sensitivity reaching 100%. The framework increased lesion detection accuracy from 56.11% to 95.56% after clustering and SM-WBF. Conclusions: CSM-FusionNet demonstrates the potential to significantly improve diagnostic reliability in US-based lesion detection, aiding precise clinical decision-making.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.